Cho tam giác ABC, $\hat{B}={45}^o,$ $\hat{C}={30}^o,$ $BC=10cm$. Tính $AB$ và $AC$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo định lý sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \to b = \frac{{a.\sin B}}{{\sin A}}\) thay vào \(S = \frac{1}{2}ab.\sin C\) ta có:
\(S = \frac{1}{2}ab.\sin C = \frac{1}{2}a.\frac{{a.\sin B}}{{\sin A}}.sin C = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\) (đpcm)
b) Ta có: \(\hat A + \hat B + \hat C = {180^0} \Rightarrow \hat A = {180^0} - {75^0} - {45^0} = {60^0}\)
\(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}} = \frac{{{{12}^2}.\sin {{75}^0}.\sin {{45}^0}}}{{2.\sin {{60}^0}}} = \frac{{144.\frac{1}{2}.\left( {\cos {{30}^0} - \cos {{120}^0}} \right)}}{{2.\frac{{\sqrt 3 }}{2}\;}} = \frac{{72.(\frac{{\sqrt 3 }}{2}-\frac{{-1 }}{2}})}{{\sqrt 3 }} = 36+12\sqrt 3 \)
Trả lời:
Tam giác ABC có:
Sin B = AC/BC (hệ thức lượng)
=> AC = Sin B.BC = Sin 450 . 10 = 5√2 (cm)
Sin C = AB/BC
=> AB = Sin 300 . 10 = 5 (cm)
Ta có tam giác ABC có: góc A + góc B + góc C = 1800
=> góc A = 1800 - 450 - 300 = 1050
Tam giác ABC có: Sin B = ACBCACBC (hệ thức lượng) => AC = Sin B.BC = Sin 450 . 10 = 5√252 (cm)
Sin C = ABBCABBC (hệ thức lượng) => AB = Sin 300 . 10 = 5 (cm)
Ta có tam giác ABC có: góc A + góc B + góc C = 1800 (định lý)
=> góc A = 1800 - 450 - 300 = 1050