Cho 3 số dương a,b,c cmr:(2a+b)(2b+c)(2c+a)>=27abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT cần chứng minh tương đương với :
\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)
Áp dụng BĐT Cô-si cho 3 số dương ,ta có :
\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)
tương tự : \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\), \(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)
Cộng 3 BĐT trên theo vế, ta được :
\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)
Dấu "=" xảy ra khi a = b = c = 1
Có a,b,c>0;a+b>c,b+c>a,c+a>b
=>a+b-c>0,b+c-a>0,c+a-b>0
=>c2(a+b-c)>0,a2(b+c-a)>0,b2(c+a-b)>0
=>c2(a+b-c)+a2(b+c-a)+b2(c+a-b)>0
=>(đẳng thức đề bài) > 0
Ta có:
\(\dfrac{a^2}{a+2b^2}=a-\dfrac{2ab^2}{a+2b^2}=a-\dfrac{2ab^2}{a+b^2+b^2}\ge a-\dfrac{2ab^2}{3\sqrt[3]{a.b^2.b^2}}=a-\dfrac{2ab^2}{3\sqrt[3]{ab}.b}=a-\dfrac{2ab}{3\sqrt[3]{ab}}=a-\dfrac{2}{3}\sqrt[3]{a^2b^2}\ge a-\dfrac{2}{3}.\dfrac{a+b+ab}{3}=a-\dfrac{2}{9}\left(a+b+ab\right)\)
Tương tự: \(\dfrac{b^2}{b+2c^2}=b-\dfrac{2}{9}\left(b+c+bc\right)\)
\(\dfrac{c^2}{c+2a^2}\ge c-\dfrac{2}{9}\left(c+a+ca\right)\)
Cộng vế theo vế các BĐT vừa chứng minh, ta được:
\(VT\ge a+b+c-\dfrac{2}{9}.2\left(a+b+c\right)-\dfrac{2}{9}\left(ab+bc+ca\right)\)
\(VT\ge3-\dfrac{4}{9}.3-\dfrac{2}{9}.\dfrac{\left(a+b+c\right)^2}{3}=1\)
Vậy ta đpcm. Đẳng thức xảy ra khi \(a=b=c=1\)
#Chiến binh Alpha :))
TA có \(a^3+b^3+c^3\ge3abc\Rightarrow-a^3-b^3-c^3\le-3abc\)
Cần chứng minh \(a^2b+b^2c+c^2a+ca^2+bc^2+ab^2-3abc\ge0\)
\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a+c\right)-3abc\)
\(\ge abc+abc+abc-3abc=0\)
\(\left(a+a+b\right)\left(b+b+c\right)\left(c+c+a\right)\ge3\sqrt[3]{a^2b}.3\sqrt[3]{b^2c}.3\sqrt[3]{c^2a}=27abc\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)