tìm x:
\(x+\frac{2}{3}=\frac{6}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}\frac{2}{9}:x + \frac{5}{6} = 0,5\\\frac{2}{9}:x = \frac{1}{2} - \frac{5}{6}\\\frac{2}{9}:x = \frac{3}{6} - \frac{5}{6}\\\frac{2}{9}:x = \frac{{ - 2}}{6}\\x = \frac{2}{9}:\frac{{ - 2}}{6}\\x = \frac{2}{9}.\frac{{ - 6}}{2}\\x = \frac{{ - 2}}{3}\end{array}\)
Vậy \(x = \frac{{ - 2}}{3}\).
b)
\(\begin{array}{l}\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - \frac{4}{3}\\x - \frac{2}{3} = \frac{9}{{12}} - \frac{{16}}{{12}}\\x - \frac{2}{3} = \frac{{ - 7}}{{12}}\\x = \frac{{ - 7}}{{12}} + \frac{2}{3}\\x = \frac{{ - 7}}{{12}} + \frac{8}{{12}}\\x = \frac{1}{12}\end{array}\)
Vậy\(x = \frac{1}{12}\).
c)
\(\begin{array}{l}1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75\\\frac{5}{4}:\left( {x - \frac{2}{3}} \right) = \frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}:\frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}.\frac{4}{3}\\x - \frac{2}{3} = \frac{5}{3}\\x = \frac{5}{3} + \frac{2}{3}\\x = \frac{7}{3}\end{array}\)
Vậy \(x = \frac{7}{3}\).
d)
\(\begin{array}{l}\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\\ - \frac{5}{6}x + \frac{5}{4} = \frac{4}{3}.\frac{3}{2}\\ - \frac{5}{6}x + \frac{5}{4} = 2\\ - \frac{5}{6}x = 2 - \frac{5}{4}\\ - \frac{5}{6}x = \frac{8}{4} - \frac{5}{4}\\ - \frac{5}{6}x = \frac{3}{4}\\x = \frac{3}{4}:\left( { - \frac{5}{6}} \right)\\x = \frac{3}{4}.\frac{{ - 6}}{5}\\x = \frac{{ - 9}}{{10}}\end{array}\)
Vậy \(x = \frac{{ - 9}}{{10}}\).
x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\) = \(\frac{5}{6}\) -\(\frac{3}{4}\) + \(\frac{2}{3}\) -\(\frac{1}{2}\)
x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\) = \(\frac{10}{12}\)-\(\frac{9}{12}\)+\(\frac{8}{12}\)-\(\frac{6}{12}\)
=>x.(1/2-2/3+3/4)=1/4
=>x.7/12=1/4
=>x=1/4:7/12
=>x=1/4.12/7
=>x=3/7
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot....\cdot\frac{30}{62}\cdot\frac{31}{64}=2^x\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.....\cdot\frac{30}{31}\cdot\frac{31}{32}\right)=2^x\)
\(\Leftrightarrow\frac{1}{32}=2^{x+1}\)
Làm nốt.
ko làm được câu này hay câu b ib với tớ nha.khẳng định tối giải.
\(\Rightarrow x\left(\frac{4}{5}-1-\frac{3}{2}\right)+\frac{4}{3}=\frac{-7}{10}\)
\(\Rightarrow x\cdot\frac{-17}{10}=\frac{-61}{30}\)
\(\Rightarrow x=\frac{61}{51}\)
vậy_
Ta có:\(\frac{4}{5}\)x - x - \(\frac{3}{2}\)x + \(\frac{4}{3}\)=\(\frac{1}{2}\)-\(\frac{6}{5}\)
=>x.(\(\frac{4}{5}\)-1-\(\frac{3}{2}\))=\(\frac{-7}{10}\)-\(\frac{4}{3}\)
=>x.\(\frac{-17}{10}\)=\(\frac{-61}{30}\)
=>x=\(\frac{-61}{30}\):\(\frac{-17}{10}\)=\(\frac{61}{51}\)
Tìm x biết: \(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}.\)
\(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}\)
\(\Rightarrow\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}+3=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}+3\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+4}{6}+1\right)+\left(\frac{x+5}{5}+1\right)=\left(\frac{x+2}{8}+1\right)\)\(+\left(\frac{x+3}{7}+1\right)+\left(\frac{x+6}{4}\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}\right)=\left(x+10\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{4}\right)\)
\(\Rightarrow\left(x+10\right)\frac{43}{90}=\left(x+10\right)\frac{29}{56}\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
cộng 3 vào cả hai vế nên phương trình vẫn bằng nhau
Ta có \(\frac{x+1}{9}+1+\frac{x+4}{6}+1+\frac{x+5}{5}+1=\frac{x+2}{8}+1+\frac{x+3}{7}+1+\frac{x+6}{4}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}-\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{4}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
mà \(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
\(-5\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
tìm x
x= 6 / 5 - 2/ 3
x= 28/15
tck minh nha
X+2/3=6/5
X=6/5-2/3
X=8/15