K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 4 2022

\(2\overrightarrow{y}-\overrightarrow{z}=2\overrightarrow{a}-2\overrightarrow{b}-2\overrightarrow{c}+3\overrightarrow{b}+2\overrightarrow{c}=2\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{x}\)

\(\Rightarrow\) Ba vecto \(\overrightarrow{x},\overrightarrow{y},\overrightarrow{z}\) đồng phẳng

NV
13 tháng 12 2020

\(\overrightarrow{a}+\overrightarrow{b}+3\overrightarrow{c}=\overrightarrow{0}\Leftrightarrow\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=-2\overrightarrow{c}\)

\(\Leftrightarrow\left(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right)^2=\left(-2\overrightarrow{c}\right)^2\)

\(\Leftrightarrow\overrightarrow{a}^2+\overrightarrow{b}^2+\overrightarrow{c}^2+2\left(\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\right)=4\overrightarrow{c}^2\)

\(\Leftrightarrow A=\dfrac{4x^2-\left(x^2+y^2+z^2\right)}{2}=\dfrac{3x^2-y^2-z^2}{2}\)

30 tháng 1 2023

Giả sử `\vec{c}=m\vec{a}+n\vec{b}`

`<=>(3;-4)=m(2;0)+n(0;-3)`

`<=>(3;-4)=(2m;-3n)`

`<=>{(m=3/2),(n=4/3):}`

   `=>\vec{c}=3/2\vec{a}+4/3\vec{b}`

14 tháng 1 2021

\(\overrightarrow{x}\) ⊥ \(\overrightarrow{y}\)

⇒ \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{2a}-\overrightarrow{b}\right)=0\). Đặt \(\left|\overrightarrow{a}\right|=a;\left|\overrightarrow{b}\right|=b\)

⇒ 2a2 - \(\overrightarrow{a}.\overrightarrow{b}\) + 2\(\overrightarrow{a}.\overrightarrow{b}\) - b2 = 0

⇒ \(\overrightarrow{a}.\overrightarrow{b}\) = b2 - 2a2 = 4 - 4 = 0

⇒ \(\left(\overrightarrow{a};\overrightarrow{b}\right)=90^0\)

NV
23 tháng 4 2022

\(cos\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=\dfrac{\overrightarrow{b}\left(\overrightarrow{a}-\overrightarrow{b}\right)}{\left|\overrightarrow{b}\right|.\left|\overrightarrow{a}-\overrightarrow{b}\right|}=\dfrac{\overrightarrow{a}.\overrightarrow{b}-\overrightarrow{b}^2}{1.\sqrt{3}}=\dfrac{2.1.cos\dfrac{\pi}{3}-1^2}{\sqrt{3}}=0\)

\(\Rightarrow\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=90^0\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(\overrightarrow {GD}  =  - \overrightarrow {DG} \)

\( \Rightarrow \overrightarrow v  = \overrightarrow {DE}  + ( - \overrightarrow {DG} ) = \overrightarrow {DE}  + \overrightarrow {GD} \)

\( \Rightarrow \overrightarrow v  = \overrightarrow {GD}  + \overrightarrow {DE}  = \overrightarrow {GE} \) (tính chất giao hóan)

Chọn B.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Vận dụng tính chất giao hoán ta có: \[\overrightarrow u  = \overrightarrow {NP}  + \overrightarrow {MN}  = \overrightarrow {MN}  + \overrightarrow {NP}  = \overrightarrow {MP} \]

Chọn C.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Bước 1: Dựng hình bình hành có cạnh song song với giá của vecto \(\overrightarrow a ,\;\overrightarrow b \) và đường chéo là vecto \(\overrightarrow u ,\;\overrightarrow v \).

Ta dựng được hình hình hành ABCD và DEGH. Trong đó:  DC và DE nằm trên giá của vecto \(\overrightarrow a \), DA và DH nằm trên giá của vecto \(\overrightarrow b \), còn vecto \(\overrightarrow u ,\;\overrightarrow v \) lần lượt là hai dường chéo.

Dễ thấy: \(\overrightarrow u  = \overrightarrow {DA}  + \overrightarrow {DC} ,\;\overrightarrow v  = \overrightarrow {DH}  + \overrightarrow {DE} \)

Mà \(\overrightarrow {DA}  = 3\overrightarrow b ,\;\overrightarrow {DC}  = \overrightarrow a \;,\;\overrightarrow {DH}  = 3\overrightarrow b ,\;\overrightarrow {DE}  =  - 2\overrightarrow a .\)

\( \Rightarrow \overrightarrow u  = 2\overrightarrow b  + \overrightarrow a ,\;\,\overrightarrow v  = 3\overrightarrow b  - 2\overrightarrow a \)