cho tam giác DEF vuông tại E có DI là tia phân giác của EDF (I ϵ EF) kẻ IH vuông DF (H ϵ DF). chứng minh △DEI=△DHI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔDEI vuông tại E và ΔDHI vuông tại H có
DI chung
góc EDI=góc HDI
=>ΔDEI=ΔDHI
Xét ΔEDI vuông tại D và ΔEHI vuông tại H có
EI chung
\(\widehat{DEI}=\widehat{HEI}\)
Do đó ΔEDI=ΔEHI
Suy ra: ID=IH
a: Xét ΔEDI và ΔFDI có
DE=DF
\(\widehat{EDI}=\widehat{FDI}\)
DI chung
Do đó: ΔEDI=ΔFDI
a: Xét ΔDEH vuông tại E và ΔDIH vuông tại I có
DH chung
góc EDH=góc IDH
=>ΔDEH=ΔDIH
b: DE=DI
HE=HI
=>DH là trung trực của EI
c: EH=HI
HI<HF
=>EH<HF
d: Xét ΔDFK có
KI,.FE là đường cao
KI cắt FE tại H
=>H là trực tâm
=>DH vuông góc KF
a: Ta có: ΔDEF cân tại D
mà DI là đường trung tuyến
nên DI là phân giác
b: Xét ΔDMI vuông tại M và ΔDNI vuông tại N có
DI chung
\(\widehat{MDI}=\widehat{NDI}\)
DO đó; ΔDMI=ΔDNI
Suy ra: IM=IN
hay ΔIMN cân tại I
Xét ΔDEI vuông tại E và ΔDHI vuông tại H có
DI chung
góc EDI=góc HDI
=>ΔDEI=ΔDHI