** Chứng tỏ rằng
a) ( 121980-21600) chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)....+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=3.\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)...+3^{97}.\left(1+3+3^2\right)\)
\(A=3.13+3^4.13+...+3^{97}.13\)
\(A=13.\left(3+3^4+..+3^{97}\right)⋮13\)
Vậy...
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=3\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\)
\(A=3\cdot13+...+3^{97}\cdot13\)
\(A=13\cdot\left(3+...+3^{97}\right)⋮13\left(đpcm\right)\)
Bài 2:
a) Ta có: \(\overline{1a3b}\) số này chia hết cho 2 và 5 nên: \(b=0\)
Mà số này lại chia hết cho 3 nên:
\(1+a+3+b=4+a+0=4+a\) ⋮ 3
TH1: \(4+a=6\Rightarrow a=2\)
TH2: \(4+a=9\Rightarrow a=5\)
TH3: \(4+a=12\Rightarrow a=8\)
Vậy: \(\left(a;b\right)=\left(2;0\right);\left(5;0\right);\left(8;0\right)\)
b) Ta có: \(\overline{2a31b}\) chia hết cho 45 nên số đó phải chia hết cho 5 và 9
Mà \(\overline{2a31b}\) chia hết cho 5 nên: \(b\in\left\{0;5\right\}\)
Lại chia hết cho 9 nên: \(2+a+3+1+b=6+a+b\) ⋮ 9
Với b = 0:
\(6+a+0=9\Rightarrow a=3\)
Với b = 5:
\(6+a+5=18\Rightarrow a=7\)
Vậy: \(\left(a;b\right)=\left(3;0\right);\left(7;5\right)\)
Bài 3:
a) \(13\cdot15\cdot17\cdot19+23\cdot26\)
\(=13\cdot\left(15\cdot17\cdot19+23\cdot2\right)\)
Nên tổng chia hết cho 13 tổng là hợp số không phải SNT
b) \(17^{100}-34\)
\(=17\cdot\left(17^{99}-2\right)\)
Nên hiệu chia hết cho 17 hiệu là hợp số không phải SNT
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)
b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)
Ghi lại đề: \(A=3+3^2+...+3^{2020}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2017}+3^{2018}+3^{2019}+3^{2020}\right)\\ A=3\left(1+3+3^2+3^3\right)+...+3^{2017}\left(1+3+3^2+3^3\right)\\ A=\left(1+3+3^2+3^3\right)\left(3+...+3^{2017}\right)\\ A=40\left(3+...+3^{2017}\right)⋮10\left(40⋮10\right)\)
a: \(G=8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)⋮15\)
c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)
\(E=1+3+3^2+3^3+...+3^{1991}\)
\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)
\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)
a)101234+2)=10+2=12
Vì 12 chia hết cho 3 nên (101234+2)chia hết cho 3
b)(10789+8)=10+8=18
Vì 18 chia hết 9 nên (10799+8) chia hết cho 9
ta có
12^1980=(12^4)^495=20736^495=(.....6)
2^1600=(2^4)^400=16^400=(.....6)
=>12^1980-2^1600=(...6)-(....6)=(...0)chia hết cho 10(đpcm)
Vậy...