K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2021

\(M=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\left|2-\sqrt{5}\right|}-\dfrac{2}{\left|2+\sqrt{5}\right|}\)

\(=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)

\(=\dfrac{8}{1}=8\)

 

3 tháng 7 2021

Lm ơn giúp mik đii mà mik bt ơn bn đó nhiều lắm . Mik đang rất cần

11 tháng 3 2022

THAM KHẢO

 

Gọi x là v.tốc dự định của xe(x>0, km/h)

Nửa quãng đường xe đi là: 120:2=60(km)

=> Vận tốc đi nửa quãng đường là: 60x60x (km/h)

=> Thời gian đi dự định là: 120x(h)120x(h)

Vì nửa qquangx đường sau xe đi với thời gian là: 60x+10(h)60x+10(h)

Theo bra ta có:

60x+60x+10=120x−0.560x+60x+10=120x−0.5

Gải được x=40(tmđk)

Vậy v.tốc dự định là 40km/h

10 tháng 1 2022

a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)

Xét tam giác AMB và tam giác ANC có:

+ AM = AN (cmt).

\(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)

+ MB = NC (gt).

\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).

\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).

Xét tam giác ABC có: AB = AC (cmt).

\(\Rightarrow\) Tam giác ABC cân tại A.

b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)

Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{​​}\) (đối đỉnh).

\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)

Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:

+ MB = NC (gt).

\(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)

\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).

c/ Tam giác MBH = Tam giác NCK (cmt).

\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).

Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).

\(\Rightarrow\) Tam giác OMN tại O.

 

24 tháng 4 2018

Bạn so sánh cùng mẫu 

so sánh cùng tử

24 tháng 4 2018

Cách 1 :

Ta có : \(\frac{7}{11}=\frac{63}{99}\)

           \(\frac{5}{9}=\frac{55}{99}\)

Vì 63 > 55 \(\Rightarrow\frac{63}{99}>\frac{55}{99}\)

Vậy \(\frac{7}{11}>\frac{5}{9}\)

Cách 2 :

Ta có :\(\frac{7}{11}=1-\frac{4}{11}\)

           \(\frac{5}{9}=1-\frac{4}{9}\)

Vì \(\frac{4}{11}< \frac{4}{9}\Rightarrow\frac{7}{11}>\frac{5}{9}\)

           

6 tháng 9 2021

c. \(\left|\dfrac{8}{4}-\left|x-\dfrac{1}{4}\right|\right|-\dfrac{1}{2}=\dfrac{3}{4}\)

\(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{8}{4}-x+\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{8}{4}+x-\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{9}{4}-x\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{7}{4}+x\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{9}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\\x=\dfrac{9}{4}-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{7}{4}+x-\dfrac{1}{2}=\dfrac{3}{4}\\-\dfrac{7}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\\x=-3\end{matrix}\right.\) 

Ở nơi x=9/4-1/2 là x-9/4-1/2 nha

 

 

6 tháng 9 2021

a. -1,5 + 2x = 2,5

<=> 2x = 2,5 + 1,5

<=> 2x = 4

<=> x = 2

b. \(\dfrac{3}{2}\left(x+5\right)-\dfrac{1}{2}=\dfrac{4}{3}\)

<=> \(\dfrac{3}{2}x+\dfrac{15}{2}-\dfrac{1}{2}=\dfrac{4}{3}\)

<=> \(\dfrac{9x}{6}+\dfrac{45}{6}-\dfrac{3}{6}=\dfrac{8}{6}\)

<=> 9x + 45 - 3 = 8

<=> 9x = 8 + 3 - 45

<=> 9x = -34

<=> x = \(\dfrac{-34}{9}\)

`@` `\text {Ans}`

`\downarrow`

`1,`

`a)`

\(\dfrac{x}{2}=\dfrac{y}{3}\text{ và }x+y=50\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2 = y/3 = (x+y)/(2 + 3) = 50/5 = 10`

`=> x/2 = y/3 = 10`

`=> x = 10*2 = 20; y = 3*10 = 30`

Vậy, `x = 20; y = 30`

`b)`

\(\dfrac{x}{2}=\dfrac{y}{3}\text{ và }5x+4y=110\)

Ta có:

`x/2 = y/3` `=> (5x)/10 = (4y)/12`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(5x)/10 = (4y)/12 = (5x+4y)/(10 + 12) = 110/22 = 5`

`=> x/2 = y/3 = 5`

`=> x = 2*5 = 10; y = 3*5 = 15`

Vậy, `x = 10; y = 15`

`c)`

\(5x=11y\text{ và }2x+3y=37\)

Ta có:

`5x = 11y -> x/11 = y/5 -> (2x)/22 = (3y)/15`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(2x)/22 = (3y)/15 = (2x+3y)/(22+15) = 37/37 = 1`

`=> x/11 = y/5 = 1`

`=> x = 11; y = 5`

Vậy, `x = 11; y = 5`

`d)`

\(\dfrac{x}{2}=\dfrac{y}{1}\text{và }x+y-63=0\)

Ta có: `x + y - 63 = 0 -> x + y = 63`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2 = y/1 = (x+y)/(2+1) = 63/3 = 21`

`=> x/2 = y/1 = 21`

`=> x = 21*2 =42; y = 21`

Vậy, `x = 42; y = 21.`

25 tháng 7 2023

`2,`

`a)`

\(\dfrac{a}{14}=\dfrac{b}{2}=\dfrac{c}{4}\text{ và }a+b+c=5\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`a/14 = b/2 = c/4 = (a+b+c)/(14+2+4)=5/20=1/4=0,25`

`=> a/14 = b/2 = c/4 = 0,25`

`=> a = 14*0,25 = 3,5` `; b = 2*0,25 = 0,5;` `c = 4*0,25 = 1`

Vậy, `a = 3,5`; `b = 0,5`; `c = 1`

`b)`

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{8}\text{ và }7a+3b-5c=7\)

Ta có:

`a/3 = b/5 = c/8 => (7a)/21 = (3b)/15 = (5c)/40`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(7a)/21 = (3b)/15 = (5c)/40 = (7a + 3b - 5c)/(21 + 15 - 40)=7/-4 = -1,75`

`=> a/3 = b/5 = c/8 = -1,75`

`=> a = 3*(-1,75) = -5,25`

`b = 5*(-1,75) = -8,75`

`c = 8*(-1,75) = -14`

Vậy, `a = -5,25; b = -8,75`; `c = -14`

`c)`

\(\dfrac{a}{3}=\dfrac{b}{8}=\dfrac{c}{5}\text{và }3a+b-2c=14\)

Ta có:

`a/3 = b/8 = c/5 -> (3a)/9 = b/8 = (2c)/10`

Câu này bạn làm tương tự nha

`d)`

\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{7}=\dfrac{c}{5}\text{ và }3a+5c-7b=30\)

Ta có:

`a/3 = b/2 -> a/21 = b/14`/

`b/7 = c/5 -> b/14 = c/10`

`=> a/21 = b/14 = c/10`

`=> (3a)/63 = (7b)/98 = (5c)/50`

Câu này bạn cũng làm tương tự.

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Bài 1:
ĐKXĐ: $x>0; x\neq 1$

\(A=\frac{(\sqrt{x}-1)(x+\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}-\frac{(\sqrt{x}+1)(x-\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}=\frac{x+\sqrt{x}+1-(x-\sqrt{x}+1)+(x+1)}{\sqrt{x}}\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{(\sqrt{x}+1)^2}{\sqrt{x}}\)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Bài 2:
\(\frac{x+2}{x\sqrt{x}+1}+\frac{\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{\sqrt{x}-1}{x-1}\)

\(=\frac{x+2}{(\sqrt{x}+1)(x-\sqrt{x}+1)}+\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{(\sqrt{x}+1)(x-\sqrt{x}+1)}-\frac{\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(=\frac{x+2+x-1}{(\sqrt{x}+1)(x-\sqrt{x}+1)}-\frac{1}{\sqrt{x}+1}=\frac{2x+1}{(\sqrt{x}+1)(x-\sqrt{x}+1)}-\frac{x-\sqrt{x}+1}{(\sqrt{x}+1)(x-\sqrt{x}+1)}\)

\(=\frac{2x+1-(x-\sqrt{x}+1)}{(\sqrt{x}+1)(x-\sqrt{x}+1)}=\frac{x+\sqrt{x}}{(\sqrt{x}+1)(x-\sqrt{x}+1)}\)

\(=\frac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(x-\sqrt{x}+1)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

Theo BĐT Cô-si:

$x+1\geq 2\sqrt{x}\Rightarrow x-\sqrt{x}+1\geq \sqrt{x}$

$\Rightarrow B\leq \frac{\sqrt{x}}{\sqrt{x}}=1$

Dấu "=" xảy ra khi $x=1$ (không thỏa mãn vì $x\neq 1$)

$\Leftrightarrow B< 1$