K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 4 2022

a.

Do \(a=-2< 0\Rightarrow\)hàm số (1) đồng biến khi \(x< 0\)

b.

Phương trình hoành độ giao điểm:

\(-2x^2=-3x-5\Leftrightarrow2x^2-3x-5=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=-2\\x=\dfrac{5}{2}\Rightarrow y=-\dfrac{25}{2}\end{matrix}\right.\)

Hai đồ thị cắt nhau tại 2 điểm có tọa độ: \(\left(-1;-2\right)\) và \(\left(\dfrac{5}{2};-\dfrac{25}{2}\right)\)

1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)

    b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5

       Thay y=5 và x=0 vào hs và tìm k

2. a) Tự vẽ

    b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)

    c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y)  (x=-2; y=0)

3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)

       Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1

        Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3

        

b)

Để hàm số \(y=\left(1-k^2\right)x-1\) là hàm số bậc nhất thì \(1-k^2\ne0\)

\(\Leftrightarrow k^2\ne1\)

hay \(k\notin\left\{1;-1\right\}\)

Để hàm số \(y=\left(1-k^2\right)x-1\) nghịch biến trên R thì \(1-k^2< 0\)

\(\Leftrightarrow k^2>1\)

\(\Leftrightarrow\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)

Vậy: Khi \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) thì hàm số \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) nghịch biến trên R

2 tháng 12 2018

a)

đường thẳng (d1) song song với đường thẳng (d2) khi :

a = a' và  b  khác  b'

 suy ra :

\(m-1=3\)                \(\Leftrightarrow m=4\)

 vậy  đường thẳng (d1) song song với đường thẳng (d2) khi  m = 4

29 tháng 4 2018

Ta có: y=x-m (d) và y=-2x+m-1 (d')

Pt hoành độ giao điểm của (d) và (d') là: 

x-m=-2x+m-1 <=> x+2x-m-m+1=0 <=> 3x-2m+1=0 (*)

Để (d) và (d') cắt nhau tại 1 điểm trên trục hoành =>y=0 <=> x=m 

=> x=m là nghiệm của pt (*). Thay x=m vào pt này, ta được:

3m-2m+1=0 <=> m+1=0 <=> m=-1

Vậy với m=-1 thì 2 đồ thị hàm số trên cắt nhau tại một điểm thuộc trục hoành.

a: Để hàm số đồng biến thì 1-m>0

hay m<1

b: Thay x=2 và y=-1 vào (d), ta được:

2-2m+m-1=-1

=>-m+1=-1

=>-m=-2

hay m=2

29 tháng 4 2021

a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)

b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)

c, Thay x = 2 ; y = 3 vào hàm số y ta được : 

\(2\left(m+5\right)+2m-10=3\)

\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)

d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0 

Thay x = 0 ; y = 9 vào hàm số y ta được : 

\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)

29 tháng 4 2021

e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0 

Thay x = 10 ; y = 0 vào hàm số y ta được : 

\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)

f, Ta có : y = ( m + 5 )x + 2m -  10 => a = m + 5 ; b = 2m - 10 ( d1 ) 

y = 2x - 1 => a = 2 ; y = -1 ( d2 ) 

Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)

g, h cái này mình quên rồi, xin lỗi )): 

24 tháng 5 2015

a) Gọi A là giao của đths với Ox => y A = 0 

=> yA = 2xA + 3 =0 => xA = -3/2

Vậy A (-3/2; 0)

b) gọi B là giao của đths với Oy => xB = 0

=> yB = 2xB + 3 =2.0 + 3 = 3

Vậy B (0;3)

c) Phương trình hoành độ giao điểm: 2x +3 = x + 1

                                               <=> 2x - x = 1 - 3

                                              <=>  x = -2

=> y = -2 + 1 = -1

Vậy toạ độ giao điểm là (-2;-1)