cho a/b = c/d
chứng minh rằng ab/cd = \(\frac{a^2+c^2}{b^2+d^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}-\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{b}\left(3\right)\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)
từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\text{ hay }\frac{a}{b}=\frac{c}{d}\)
TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)
\(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)
Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\text{ hay }\frac{a}{b}=\frac{d}{c}\)
Vậy : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\text{ thì }\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)
kinh quá
Cho a,b,c,d>0 và a+b+c+d=4
Chúng minh rằng \(\frac{1}{ab}+\frac{1}{cd}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
*\(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}=\frac{a}{b}.\left(\frac{a}{b}\right)=\frac{ac}{bd}\)(đpcm)
* \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\left(\frac{a+c}{b+d}\right)^2\)(1)
Ta lại có \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(2)
Từ (1),(2) => đpcm
Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)= k ( k \(\in\)Z , k khác 0 )
=> a = bk ; c = dk
Ta có:
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abd^2=abc^2-b^2cd\)
\(\Leftrightarrow ad\left(ac-bd\right)=bc\left(ac-bd\right)\)
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Cho a,b,c,d>0 và a+b+c+d=4
Chúng minh rằng \(\frac{1}{ab}+\frac{1}{cd}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
ta có ab( a\(^2\)+b\(^2\))\(\le\)2( tự CM)
=> ( a\(^2\)+ b\(^2\))\(\le\)2/ab
=> ( a\(^2\)+ b\(^2\))/2\(\le\)1/ab
làm tương tự ta có ( c\(^2\)+d\(^2\))/2\(\le\)1/cd
cộng vế tương ứng vế. Hết.
mình dùng tv ₫ể viết, có một Số chỗ hơi "khắm". Xin thứ lỗi.
Bạn Huy Le ơi, cho mik hỏi tại sao ab(a^2+b^2)<=2 vậy
Bạn bảotự chứng minh được à, tại saolại như thế vậy ??!!
Ta có:
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có:
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{ab}{dc}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1)(2) => \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}.\)
\(\Rightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)
\(\Rightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Rightarrow a^2cd+b^2cd-abc^2-abd^2=0\)
\(\Rightarrow\left(a^2cd-abc^2\right)+\left(b^2cd-abd^2\right)=0\)
\(\Rightarrow ac.\left(ad-bc\right)+bd.\left(bc-ad\right)=0\)
\(\Rightarrow ac.\left(ad-bc\right)-bd.\left(ad-bc\right)=0\)
\(\Rightarrow\left(ad-bc\right).\left(ac-bd\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}ad-bc=0\\ac-bd=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}ad=bc\\ac=bd\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{c}{d}\left(đpcm\right).\\\frac{a}{b}=\frac{d}{c}\end{matrix}\right.\)
Vậy \(\frac{a}{b}=\frac{c}{d}.\)
Chúc bạn học tốt!
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\left(đpcm\right)\)
\(\frac{a}{b}\) =\(\frac{c}{d}\) =>\(\frac{a}{c}\) =\(\frac{b}{d}\) =\(\frac{a-b}{c-d}\) =>\(\frac{ab}{cd}\) = \(\frac{a}{c}\) x\(\frac{b}{d}\) = \(\frac{a-b}{c-d}\) x \(\frac{a-b}{c-d}\) = \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Còn với\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) thì bạn chỉ cần thay dấu trừ thành dấu công là được
Chúc bạn học tốt