K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\)

Do đó:ΔHAB\(\sim\)ΔHCA

6 tháng 5 2018

a)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

                \(AB^2+AC^2=BC^2\)

        \(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

        \(\Leftrightarrow\)   \(BC=\sqrt{100}=10\)

b)  Xét  \(\Delta HAB\)và   \(\Delta HCA\)có:

      \(\widehat{AHB}=\widehat{CHA}=90^0\)

     \(\widehat{HAB}=\widehat{HCA}\)  (cùng phụ với góc HAC)

suy ra:   \(\Delta HAB~\Delta HCA\)(g.g)

c)  Xét \(\Delta ABH\)và  \(\Delta CBA\)có:

       \(\widehat{AHB}=\widehat{CAB}=90^0\)

      \(\widehat{B}\) CHUNG

suy ra:   \(\Delta ABH~\Delta CBA\)  (g.g)

\(\Rightarrow\)\(\frac{BH}{AB}=\frac{AB}{BC}\) 

\(\Rightarrow\)\(BH.BC=AB^2\)  (1)

\(BE=BC-CE=10-4=6\)  \(\Rightarrow\)\(BE=AB\) \(\Rightarrow\)\(BE^2=AB^2\)  (2) 

Từ (1) và (2) suy ra:   \(BE^2=BH.BC\)

d)    \(S_{ABC}=\frac{AB.AC}{2}=24\)

\(\Delta ABC\)   có   \(BD\)là phân giác \(\widehat{ABC}\)

\(\Rightarrow\)\(\frac{S_{BAD}}{S_{BDC}}=\frac{AB}{BC}=\frac{3}{5}\)  

\(\Rightarrow\)\(\frac{S_{BAD}}{3}=\frac{S_{BDC}}{5}=\frac{S_{BAD}+S_{BDC}}{3+5}=\frac{S_{ABC}}{8}=3\)

\(\Rightarrow\)\(S_{BAD}=9\)

Xét  \(\Delta ABD\)và   \(\Delta EBD\) có:

    \(AB=EB\) (câu c)

   \(\widehat{ABD}=\widehat{EBD}\) (gt)

   \(BD:\)chung

suy ra:  \(\Delta ABD=\Delta EBD\) (c.g.c)

\(\Rightarrow\)\(S_{ABD}=S_{EBD}=9\)

\(\Rightarrow\)\(S_{CED}=S_{ABC}-S_{ABD}-S_{EBD}=6\)

p/s: tính diện tích CED còn cách khác, bn dễ dàng c/m tgiac CED ~ tgiac CAB, đến đây thì lm típ nha, 

13 tháng 4 2021

đc

a: BC=10cm

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔHAB∼ΔHCA

4 tháng 3 2022

Cảm ơn bạn rất nhìu😘

20 tháng 4 2017

a) tính BC:

Áp dụng định lí Py-tago vào \(\Delta\)vuông ABC

ta có: BC2=BA2+AC2

       =>BC2= 62+82

     => BC2= 36+64

     =>BC2= 100

     => BC= \(\sqrt{100}\)

    => BC= 10 (cm)

b)c/m \(\Delta\)HAB đồng dạng \(\Delta\)HCA:

Ta có: - tam giác HAB đồng dạng với tam giác ABC ( \(\widehat{B}\)chung)

         - tam giác HAC đồng dạng với tam giác ABC ( \(\widehat{C}\)chung)

     => \(\Delta HAB\)đồng dạng \(\Delta HCA\)( cùng đồng dạng \(\Delta ABC\))

21 tháng 4 2017

có bạn nào giúp minh câu c và d được k. mình k cho

2 tháng 4 2017

tau lop 9 may la thang may nao 

2 tháng 4 2017

ket ban voi minh nha 

a: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

BE là phân giác

=>AE/AB=CE/BC

=>AE/3=CE/5=16/8=2

=>AE=6cm; CE=10cm

b: Xet ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA
=>ΔHAB đồng dạng vơi ΔHCA
c: ΔABC vuông tại A

mà AH là đường cao

nên BA^2=BH*BC

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: BC=10cm; AD=3cm; CD=5cm

b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)

Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)

Xét ΔCED và ΔCAB có 

\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)

\(\widehat{C}\) chung

Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)