Cho a,b >0. CM: (a+b)(\(\dfrac{1}{a}+\dfrac{1}{b})\ge4\)
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT cần chứng minh tương đương:
\(\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
Áp dụng BĐT với hai số dương ta có:
`a+b>=2sqrt{ab}`
`1/a+1/b>=2/sqrt{ab}`
`=>(a+b)(1/a+1/b)>=2sqrt{ab}. 2/sqrt{ab}=4`
Dấu "=" xảy ra khi `a=b>0`
Sửa đề: \(\dfrac{a^2+b^2}{2}\ge ab\)
Ta có: \(\left(a-b\right)^2\ge0\) với mọi a, b
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge ab\)
Dấu "=" xảy ra khi a=b
Lời giải:
a.
$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0$
$\Rightarrow \frac{ad-bc}{bd}< 0$
$\Rightarrow ad-bc<0$ (do $bd>0$)
$\Rightarrow ad< bc$ (đpcm)
b.
$\frac{a}{b}-\frac{a+c}{b+d}=\frac{a(b+d)-b(a+c)}{b(b+d)}=\frac{ad-bc}{b(b+d)}<0$ do $ad-bc<0$ và $b(b+d)>0$
$\Rightarrow \frac{a}{b}< \frac{a+c}{b+d}$
--------
$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$
$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$
Ta có đpcm.
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)
\(=7xy+3x-2y-y^2\)
b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)
\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)
c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)
\(=7a^2b-11b^2+9c^2\)
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Leftrightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)
Tương tự:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\left(3\right)\)
Nhân (1),(2) và (3) theo vế:
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\)
Dấu "=" xảy ra khi a=b=c=1/2
Đề sai nhé em
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) thì đúng
vâng, em cảm ơn ạ