(-10 - 1^2 - 1^4 - 1^6 - ... -1^1024
giup minh voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S1=1+(-2)+...+2001+(-2002)
Có:(2002-1):1+1=2002(số)
S1=(1+(-2))+...+(2001+(-2002))
S1=(-1)+...+(-1)
Có:2002:2=1001(số)
=>S1=(-1).1001
=>S1=-1001
nhóm âm vào âm.dương vào dương
hoặc nhóm số đầu với số cuối số 2 với số kế cuối
Theo đề : Ta có : 1 .2 + 2.3 + 3.1 + a . 6 + 5.3 + 6.1 +7.4 + 8.2 + 9.1 +10 .2 / 25 = 5,16
=> 1 .2 + 2.3 + 3.1 + a . 6 + 5.3 + 6.1 +7.4 + 8.2 + 9.1 +10 .2 = 5,16 . 25
=> 1 .2 + 2.3 + 3.1 + a . 6 + 5.3 + 6.1 +7.4 + 8.2 + 9.1 +10 .2 = 129
=> a.6 + (1 .2 + 2.3 + 3.1 + 5.3 + 6.1 +7.4 + 8.2 + 9.1 +10 .2) = 129
=> a .6 + 105 = 129
=> a .6 = 129 - 105
=> a .6 = 24
=> a = 24 : 6
=> a = 4
Vậy a = 4
Coi a là số tự nhiên nhỏ nhất
Bài 1 Khi chia a cho 3 dư 1 ; chia 4 dư 2, 5 dư 3 suy ra a-1 chia hết cho 3, a-2 chia hết cho 4,a-3 chia hết cho 5,a-4 chia hết cho 6
hay a+2 chia hết cho3,a+2 chia hết cho 4,a+2 chia hết cho 5,a+2 chia hết cho 6 suy ra a+2 thuộc BC(3,4,5,6)
Suy ra BCNN(3,4,5,6)=32. 23.5=360
BCNN(3,4,5,6)=B(360)=(0;360;720;1080;...)
a thuộc(358;718;1078,..)
Mà a là số tự nhiên nhỏ nhất và chia hết cho11 suy ra a=1078
Bài 3 3n+1 là bội của 10 suy ra 3n+1 có tận cùng là 0 từ đó suy ra 3n+1=(...0)
3n =(...9) (số tận cùng của 3n=9)
Ta có 3n+4+1=3n.34+1
=(...9).(...1) +1
= (...0) Vậy 3n+4+1 có tận cùng là 0
Suy ra 3n+4+1 là bội của 10
(1 + 1 + 1)! = 6
2 + 2 + 2 = 6
3 * 3 - 3 =6
5 + 5 / 5 = 6
6 + 6 - 6 = 6
7 + 7 / 7 = 6
mình biết chừng đó thoy
(1+1+1)!=6
2+2+2=6
3*3-3=6
căn4+ căn+ căn 4=6
căn9*căn9-căn9=6
c
B = \(1+\frac{1}{3}+\frac{1}{6}+....+\frac{1}{630}=1+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{1260}\)
B = \(1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{35.36}\right)\)
B = \(1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{35}-\frac{1}{36}\right)\)
B = \(1+2\left(\frac{1}{2}-\frac{1}{36}\right)=1+2.\frac{17}{36}\)
B = \(1+\frac{17}{18}\)
B = \(\frac{35}{18}\)
\(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{99x101}\)
\(A\)\(x2=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{99x101}\)
\(A\)\(x2=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(A\)\(x2=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101}:2=\frac{100}{101}x\frac{1}{2}=\frac{50}{101}\)
\(\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{1}{2}-\frac{1}{3}+-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times0\)
\(=0\)
kết bạn nhé