tìm số dư trong phép chia 3^2016 cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$207\equiv -1\pmod {13}$
$\Rightarrow 207^{2016}\equiv (-1)^{2016}\equiv 1\pmod {13}$
Vậy $207^{2016}$ chia $13$ dư $1$
Tổng các chữ số của A :
1 x 2016 = 2016
Mà 2016 có tổng các chữ số là 9; tức 2016 chia hết cho 9
Suy ra A chia hết cho 9.
Số dư : 0.
Ta có: 1 nhóm 9 chữ số 1 thì chia hết cho 9
Số nhóm 9 chữ số 1 là: 2016 : 9 = 224 (nhóm)
Vì 2016 chia hết cho 9, suy ra: A chia hết cho 9
Vậy: A : 9 có số dư là 0
B=3+3²+3³+..... +3¹00
B=3²+3³+3⁴+... 3¹00+3
B=3²(1+3+3²) +... +3 98(1+3+3²) +3
B=3²•13+... +3 98•13+3
=) 3²•13+3 98•13 chia hết cho 13
=) Số dư là 3
Số số hạng của B:
\(100-1+1=100\) (số)
Do 100 chia 3 dư 1 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 3 số hạng, dư 1 số hạng như sau:
\(B=3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=3+3^2.\left(1+3+3^2\right)+3^5.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=3+3^2.13+3^5.13+...+3^{98}.13\)
\(=3+13.\left(3^2+3^5+...+3^{98}\right)\)
Do \(13.\left(3^2+3^5+...+3^{98}\right)⋮13\)
\(\Rightarrow B=3+13.\left(3^2+3^5+...+3^{98}\right)\) chia 13 dư 3
Vậy số dư trong phép chia B cho 13 là 3
B = 3 + 32 + 33 + 34 + ... + 3100
Xét dãy số: 1;2; 3;...; 100
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100
vì 100 : 3 = 33 dư 1 nên nhóm 3 số hạng liên tiếp của B thành một nhóm khi đó
B = (3100 + 399 + 398) + (397 + 396 + 395) + ... + (34 + 33 + 32) + 3
B = 398.(32 + 3 + 1) + 395.(32 + 3 + 1) + ... + 32.(32 + 3 + 1) + 3
B = 398.13 + 395.13 + ... + 32.13 + 3
B = 13.(398 + 395 + ... + 32) + 3
Vì 13 ⋮ 13; B : 13 dư 3.
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
bài làm
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
vậy ....................
hok tốt
\(3^{2016}\equiv1^{2016}\)
mà \(1^{2016}\)chia 13 dư 1
nên 3^2016 : 13 dư 1