Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 6 cm, AC = 8 cm.
a/ Chứng minh tam giác ABC đồng dạng tam giác BCA. Tính độ dài BC, BH.
b/ Gọi M là trung điểm của AB, N là hình chiếu của H trên AC. Chứng minh HN bình phương = AN.CN
c/ Gọi I là giao điểm của MH và AC. Chứng minh CI.AB = 2 CN.MI
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
b: Xét ΔAHC vuông tại H có HN là đường cao
nên \(HN^2=NA\cdot NC\)