K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

Ta có 
do x+y+z=1 và x+y+z>=0 
=>x,y,z =<1 
Ta có xy+yz+zx -2xyz >=xyz+xyz+xyz -2xyz =xyz >=0 
dấu = xảy ra <=> 2 trong 3 số =0 
*ta có x+y+z >=3 căn bậc 3(xyz) BĐT cô-si 
=>xyz<=((x+y+z)^3)/27 
=>-2xyz>=-2/27 (1) 
Lại có xy+yz+zx <=1/3(x^2+y^2+z^2)=1/3 (2) 
Từ (1) và (2) => xy+yz+zx -2xyz <=1/3-2/27 =7/27

\(\RightarrowĐPCM\)

21 tháng 10 2017

ngược dấu 

NV
1 tháng 4 2021

\(P=xy+yz+zx-2xyz=\left(xy+yz+zx\right)\left(x+y+z\right)-2xyz\)

\(P=xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+xyz\ge0\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị

Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow z\le\dfrac{1}{3}\)

\(P=xy\left(1-2z\right)+z\left(x+y\right)=xy\left(1-2z\right)+z\left(1-z\right)\)

\(P\le\dfrac{\left(x+y\right)^2}{4}\left(1-2z\right)+z\left(1-z\right)=\dfrac{\left(1-z\right)^2\left(1-2z\right)}{4}+z\left(1-z\right)\)

\(P\le\dfrac{1+z^2-2z^3}{4}=\dfrac{1}{4}+\dfrac{z.z.\left(1-2z\right)}{4}\le\dfrac{1}{4}+\dfrac{1}{27.4}\left(z+z+1-2z\right)^3=\dfrac{7}{27}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

30 tháng 3 2018

kho the