Cho phương trình: x2-2(m-1)x-4m=0.Chứng tỏ phương trình có nghiệm với mọi m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Δ' = m 2 - (-4m - 4) = m 2 + 4m + 4 = m + 2 2 ≥ 0 ∀m
Vậy phương trình đã cho luôn có nghiệm với mọi m
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Delta'=\left(m+1\right)^2-4m=\left(m-1\right)^2\ge0;\forall m\)
\(\Rightarrow\) Phương trình có nghiệm với mọi m
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Khi m=-2 thì (1) sẽ là;
x^2+2x-3=0
=>x=-3 hoặc x=1
b: Δ=(-m)^2-4(m-1)
=m^2-4m+4=(m-2)^2>=0
=>Phương trình luôn có 2 nghiệm
c: (1) có 1 nghiệm bằng 3
=>3^2-3m+m-1=0
=>8-2m=0
=>m=4
=>x^2-4x+3=0
=>x=1 hoặc x=3
Vậy: nghiệm còn lại là 1
![](https://rs.olm.vn/images/avt/0.png?1311)
a/
ta có : Δ = [-(m - 2) ]2 - 4 . 1 . (m - 5)
= m2 - 2m + 4 - 4m + 20
= m2 - 6m + 24
để pt có nghiệm thì : Δ ≥ 0
⇔ m2 - 6m + 24 ≥ 0
⇔ m2 - 2 . 3 . m + 32 + 15 ≥ 0
⇔ ( m - 3 )2 +15 ≥ 0
ta thấy : ( m - 3 )2 ≥ 0 ==> ( m - 3 )2 + 15 ≥ 15 > 0
Vậy pt trên luôn có nghiệm với mọi m
b/
:v
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Δ=(m+1)^2-4m=(m-1)^2>=0
=>Phương trình luôn có nghiệm
b: x1^2+x2^2+3x1x2=5
=>(x1+x2)^2+x1x2=5
=>(m+1)^2+m=5
=>m^2+3m-4=0
=>(m+4)(m-1)=0
=>m=1 hoặc m=-4
Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4m\right)\)
\(=\left(-2m+2\right)^2-4\cdot\left(-4m\right)\)
\(=4m^2-8m+4+16m\)
\(=4m^2+8m+4\)
\(=\left(2m+2\right)^2\ge0\forall m\)
Vậy: Phương trình luôn có nghiệm với mọi m