K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2022

\(P\left(x\right)+Q\left(x\right)=0\\ \Rightarrow Q\left(x\right)=-P\left(x\right)=-x^3+2x^2-8x+1\)

`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)

`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`

`= 2x^2+3`

 

`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)

`= -x^3+(3x^2-x^2)+(-3x+2x)+2`

`= -x^3+2x^2-x+2`

`P(x)-Q(x)-R(x)=0`

`-> P(X)-Q(x)=R(x)`

`-> R(x)=P(x)-Q(x)`

`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`

`-> R(x)=2x^2+3+x^3-2x^2+x-2`

`= x^3+(2x^2-2x^2)+x+(3-2)`

`= x^3+x+1`

`@`\(\text{dn inactive.}\)

a: P(x)-Q(x)-R(x)=0

=>R(x)=P(x)-Q(x)

=2x^2+3+x^3-2x^2+x-2

=x^3+x+1

a)P(x) = 7x3 - x2 + 5x - 2x3 +6 - 8x

=5x^3-x^2-3x+6

 Q(x) = -2x + x3 - 4x2 + 3 - 5x2

=x^3-9x^2-2x+3

b)

P(x) - Q(x)=4^3+8x^2-x-3

P(x) + Q(x)=6^3-10x^2-5x+9

10 tháng 4 2020

dsssws

a) \(^+\begin{matrix}P\left(x\right)=-x^3+2x^2-4\\Q\left(x\right)=x^3-x^2+5x+4\\\overline{P\left(x\right)+Q\left(x\right)=x^2+5x}\end{matrix}\)       

 

   \(\begin{matrix}P\left(x\right)=-x^3+2x^2-4\\^-Q\left(x\right)=x^3-x^2+5x+4\\\overline{P\left(x\right)-Q\left(x\right)=-2x^3+3x^2-5x-8}\end{matrix}\)

b) Cho \(P\left(x\right)+Q\left(x\right)=0\)

  hay  \(x^2+5x=0\)

        \(x.x+5x=0\)

        \(x.\left(x+5\right)=0\)

⇒ \(x=0\) hoặc \(x+5=0\)

⇒ \(x=0\) hoặc \(x\)        \(=0-5=-5\)

Vậy  \(x=0\) hoặc \(x=-5\) là nghiệm của đa thức \(P\left(x\right)+Q\left(x\right)\)

     

      

 

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1