Cho x,y,z>0,3x2+4y2+5z2=2xyz.
Tìm Min D =3x+2y+z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng trực tiếp bất đẳng thức Cauchy-Schwarz dạng Engel:
\(VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)+2\left(x+y+z\right)+3\left(x+y+z\right)}=1\)
Dấu bằng xảy ra khi \(x=y=z=2\)
Áp dụng BĐT AM - GM cho 2 số dương, ta được: \(\frac{x^2}{x+2y+3z}+\frac{1}{36}\left(x+2y+3z\right)\ge2\sqrt{\frac{x^2}{x+2y+3z}.\frac{1}{36}\left(x+2y+3z\right)}=\frac{1}{3}x\Rightarrow\frac{x^2}{x+2y+3z}\ge\frac{11}{36}x-\frac{1}{18}y-\frac{1}{12}z\)Tương tự, ta có: \(\frac{y^2}{y+2z+3x}\ge\frac{11}{36}y-\frac{1}{18}z-\frac{1}{12}x\); \(\frac{z^2}{z+2x+3y}\ge\frac{11}{36}z-\frac{1}{18}x-\frac{1}{12}y\)
Cộng theo vế của 3 bất đẳng thức trên, ta được: \(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\ge\frac{1}{6}\left(x+y+z\right)=1\)
Đẳng thức xảy ra khi x = y = z = 2
\(\dfrac{S}{2\sqrt{3}}=\dfrac{x}{2\sqrt{3x\left(2y+2z-x\right)}}+\dfrac{y}{2\sqrt{3y\left(2x+2z-y\right)}}+\dfrac{z}{2\sqrt{3z\left(2x+2y-z\right)}}\)
\(\dfrac{S}{2\sqrt{3}}\ge\dfrac{x}{3x+2y+2z-x}+\dfrac{y}{3x+2x+2z-y}+\dfrac{z}{3z+2x+2y-z}=\dfrac{1}{2}\)
\(\Rightarrow S\ge\sqrt{3}\)
\(S_{min}=\sqrt{3}\) khi \(x=y=z\)
Lời giải:
a.
\(3x^2+2y\vdots 11\Leftrightarrow 5(3x^2+2y)\vdots 11\)
$\Leftrightarrow 15x^2+10y\vdots 11$
$\Leftrightarrow 15x^2+10y-22y\vdots 11$
$\Leftrightarrow 15x^2-12y\vdots 11$ (đpcm)
b.
$2x+3y^2\vdots 7$
$\Leftrightarrow 3(2x+3y^2)\vdots 7$
$\Leftrightarrow 6x+9y^2\vdots 7$
$\Leftrightarrow 6x+9y^2+7y^2\vdots 7$
$\Leftrightarrow 6x+16y^2\vdots 7$ (đpcm)
Ta có: \(\left(x^2+y^2+2xy+2yz+2xz\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=3\)
\(\Rightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=3\)
\(\Rightarrow\left(x+y+z\right)^2\le3\)
Dấu "=" xảy ra <=> x=y=z
Do đó \(-\sqrt{3}\le x+y+z\le\sqrt{3}\)
\(\Rightarrow-\sqrt{3}\le A\le\sqrt{3}\)
=> \(\hept{\begin{cases}Min_A=-\sqrt{3}\Leftrightarrow x=y=z=\frac{-\sqrt{3}}{3}\\Max_A=\sqrt{3}\Leftrightarrow x=y=z=\frac{\sqrt{3}}{3}\end{cases}}\)
\(P=x+y+z+\frac{3}{4x}+\frac{9}{8y}+\frac{1}{z}\)
\(=\frac{3}{4}x+\frac{3}{4x}+\frac{1}{2}y+\frac{9}{8y}+\frac{1}{4}z+\frac{1}{z}+\frac{1}{4}x+\frac{1}{2}y+\frac{3}{4}z\)
\(\ge\frac{3}{2}\sqrt{x.\frac{1}{x}}+2\sqrt{\frac{1}{2}y.\frac{9}{8y}}+2\sqrt{\frac{1}{4}z.\frac{1}{z}}+\frac{1}{4}.10\)
\(=\frac{3}{2}+\frac{3}{2}+1+\frac{5}{2}=6,5\)
Dấu \(=\)khi \(\hept{\begin{cases}x=1\\y=1,5\\z=2\end{cases}}\).