K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: M(1)=-3

=>1-2m+m=3

=>1-m=3

hay m=-2

b: M(x)=x2+4x-2

Đặt M(x)=0

=>x2+4x+4-6=0

=>(x+2)2=6

hay \(x\in\left\{\sqrt{6}-2;-\sqrt{6}-2\right\}\)

\(M\left(x\right)=-3x^2+6x-4+2x^2-5x+4=-x^2+x\)

Đặt M(x)=0

=>-x(x-1)=0

=>x=0 hoặc x=1

14 tháng 4 2022

\(M\left(x\right)=-x^2+x=-x\left(x-1\right)\)

Giả sử: \(M\left(x\right)=0\)

\(\Leftrightarrow-x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

17 tháng 4 2017

khi người khác k cho mình thì có thông báo ko z