K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 4 2022

\(y'=-x^2+4x\)

\(y'\left(-2\right)=-4-8=-12\)

\(y\left(-2\right)=\dfrac{29}{3}\)

Phương trình tiếp tuyến:

\(y=-12\left(x+2\right)+\dfrac{29}{3}\Leftrightarrow y=-12x-\dfrac{43}{3}\)

NV
19 tháng 3 2021

\(y=\dfrac{2x+2}{x-1}\Rightarrow y'=\dfrac{-4}{\left(x-1\right)^2}\)

a. \(y'\left(2\right)=-4\)

Phương trình tiếp tuyến: \(y=-4\left(x-2\right)+4\Leftrightarrow y=-4x+12\)

b. Pt hoành độ giao điểm:

\(\dfrac{2x+2}{x-1}=2x-1\Leftrightarrow2x^2-5x-1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{33}}{4}\\x=\dfrac{5+\sqrt{33}}{4}\end{matrix}\right.\)

\(y'\left(\dfrac{5-\sqrt{33}}{4}\right)=-\dfrac{17+\sqrt{33}}{8}\) ; \(y'\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{-17+\sqrt{33}}{8}\)

\(y\left(\dfrac{5-\sqrt{33}}{4}\right)=\dfrac{3-\sqrt{33}}{2}\) ; \(y\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{3+\sqrt{33}}{2}\)

Có 2 tiếp tuyến thỏa mãn: 

\(\left[{}\begin{matrix}y=\dfrac{-17-\sqrt{33}}{8}\left(x-\dfrac{5-\sqrt{33}}{4}\right)+\dfrac{3-\sqrt{33}}{2}\\y=\dfrac{-17+\sqrt{33}}{8}\left(x-\dfrac{5+\sqrt{33}}{4}\right)+\dfrac{3+\sqrt{33}}{2}\end{matrix}\right.\)

Đề bài cho số liệu thật kì quặc

29 tháng 4 2016

a. Ta có : \(y'=3x^2-6x+2\)

\(x_0=1\Leftrightarrow y_0=-6\) và \(y'\left(x_0\right)=y'\left(-1\right)=11\)

Suy ra phương trình tiếp tuyến là \(y=y'\left(-1\right)\left(x+1\right)-6=11x+5\)

 

b. Gọi \(M\left(x_0;6\right)\) là tiếp điểm, ta có :

\(x_0^3-3x_0^2+2x_0=6\Leftrightarrow\left(x_0-3\right)\left(x_0^2+2\right)=0\Leftrightarrow x_0=3\)

Vậy phương trình tiếp tuyến là :

 \(y=y'\left(3\right)\left(x-3\right)+6=11x-27\)

 

c. PTHD giao điểm của (C) với Ox :

\(x^3-3x^2+2x=0\Leftrightarrow x=0;x=1;x=2\)

\(x=0\) ta có tiếp tuyến : \(y=y'\left(0\right)\left(x-0\right)+0=2x\)

\(x=1\) ta có tiếp tuyến : \(y=y'\left(1\right)\left(x-1\right)+0=-x+1\)

\(x=2\) ta có tiếp tuyến : \(y=y'\left(2\right)\left(x-2\right)+0=2x-4\)

1 tháng 7 2019

Đáp án B

Tọa độ giao điểm của (C) và đường thẳng  y = x − 3 là nghiệm của hệ:

y = − 2 x + 3 x − 1 y = x − 3 ⇔ x = 2 y = − 1 x = 0 y = − 3 ⇒ A ( 2 ; − 1 ) B ( 0 ; − 3 )

y ' = − 1 x − 1 2

Phương trình tiếp tuyến với ( C) tại A ( 2 ; − 1 )  là:

y = − 1 2 − 1 2 ( x − 2 ) − 1 = − x + 1

Phương trình tiếp tuyến với ( C) tại B ( 0 ; − 3 )  là:

 

y = − 1 0 − 1 2 ( x − 0 ) − 3 = − x − 3

 

Bài 1: Viết phương trình đồ thị hàm sốa) \(y=x^3-3x^2+2 \) tại điểm (-1;-2)b) \(y=\dfrac{x^2+4x+5}{x+2}\) tại điểm có hoành độ bằng 0Bài 2: Viết phương trình tiếp tuyến với:a) Đường cong (C): \(y=x^3+x-3\) tại điểm có hoành độ bằng -1b) Đường cong (C): \(y=x^3-3x^2\) tại điểm có tung độ bằng -4c) Đường cong (C): \(y=\dfrac{x-3}{2x+1}\) tại điểm có hoành độ bằng -1Bài 3: Viết phương trình tiếp tuyến với:a)...
Đọc tiếp

Bài 1: Viết phương trình đồ thị hàm số

a) \(y=x^3-3x^2+2 \) tại điểm (-1;-2)

b) \(y=\dfrac{x^2+4x+5}{x+2}\) tại điểm có hoành độ bằng 0

Bài 2: Viết phương trình tiếp tuyến với:

a) Đường cong (C): \(y=x^3+x-3\) tại điểm có hoành độ bằng -1

b) Đường cong (C): \(y=x^3-3x^2\) tại điểm có tung độ bằng -4

c) Đường cong (C): \(y=\dfrac{x-3}{2x+1}\) tại điểm có hoành độ bằng -1

Bài 3: Viết phương trình tiếp tuyến với:

a) Đường cong (C): \(y=\dfrac{1}{3}3x^3-2x^2+3x+1\) biết tiếp tuyến song song đường thẳng \(y=\dfrac{-3}{4}x\)

b) Đường cong (C): \(y=\dfrac{x^2+3x+1}{-x-2}\) biết tiếp tuyến song song với đường thẳng 2x+y-5=0

Bài 4: Cho đường cong (C): \(y=\dfrac{x^2-2x+2}{x-1}\). Viết phương trình tiếp tuyến của (C) biết:

a) Tại điểm có hoành độ bằng 6

b) Song song với đường thẳng \(y=-3x+29\)

c) Vuông góc với đường thẳng \(y=\dfrac{1}{3}x+2\)

Bài 5: Cho hàm số \(y=\dfrac{3x-2}{x-1}\) (C). Viết phương trình tiếp tuyến của đồ thị hàm số (C) biết:

a) Tiếp tuyến đi qua A(2;0)

b) Tiếp tuyến tạo với trục hoành 1 góc 45°

Mình làm xong hết rồi nhưng mà không biết đúng hay không. Nhờ mọi người giải giúp mình để mình thử đối chiếu đáp án được không ạ?

 

 

0
23 tháng 4 2020

hello các bạn

5 tháng 5 2023

I. Hàm số xác định trên D = R.

+) \(\lim\limits f\left(x\right)_{x\rightarrow1}=\lim\limits_{x\rightarrow1}\dfrac{x^2-3x+2}{x-1}\)

                        \(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)}\) 

                        \(=\lim\limits_{x\rightarrow1}\left(x-2\right)\)

                        \(=-1\)

+) \(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\left(1-2x\right)=-1\)

=> Hàm số liên tục tại x0 = 1

II. Gọi phương trình tiếp tuyến tại N(x0; y0) là:

y = y'(x0)(x - x0) + y0

y = -x3 - x2 - 6x + 1 

=> y' = -3x2 - 2x + 6 

Vì tiếp tuyến song song với đường thẳng y = -6x + 17 => y'(x0) = 6

<=> -3x2 - 2x + 6 = 6

<=> -3x2 - 2x = 0

<=> -x(3x + 2) = 0

<=> x = 0 hoặc x = -2/3

Trường hợp 1: x0 = 0 => y0 = 0

=> y'(x0) = 6

=> Phương trình tiếp tuyến: y = 6(x - 0) + 1

                                      <=> y = 6x + 1

Trường hợp 2: x0 = -2/3 => y0 = 37/9

=> y'(x0) = 9

=> Phương trình tiếp tuyến: y = 9(x + 2/3) + 37/9

                                      <=> y = 9x + 91/9

NV
14 tháng 3 2022

\(y'=6x^2-4x-4\)

\(y'\left(0\right)=-4\)

\(y\left(0\right)=1\)

Do đó pt tiếp tuyến tại điểm có hoành độ x=0 là:

\(y=-4\left(x-0\right)+1\Leftrightarrow y=-4x+1\)

4 tháng 10 2018

Đáp án A

Ta có y ' = 8 x - 2 2 . PTTT cần tìm là  y = y ' 0 x - x M + y M ⇔ y = - 2 x - 1