K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 4 2022

29.

SMN cân tại S \(\Rightarrow SH\perp MN\) (trung tuyến đồng thời là đường cao trong tam giác cân)

Mà \(\left\{{}\begin{matrix}MN=\left(SMN\right)\cap\left(MNPQ\right)\\\left(SMN\right)\perp\left(MNPQ\right)\end{matrix}\right.\)

\(\Rightarrow SH\perp\left(MNPQ\right)\)

Hay SH là đường cao của chóp

15 tháng 5 2022

Hi bạn, câu 29 này mình có cái cách này dùng cho các bài lim khi rơi vào trường hợp vô định thì bạn dùng quy tắc L'Hospital làm cho nhanh với trường hợp các bài trắc nghiệm như thế này

Ở bài 29 này đang rơi vào dạng \(\dfrac{0}{0}\) nên dùng quy tắc L'Hospital được nè. Bạn làm như sau:

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\x\ge-3\end{matrix}\right.\)

Bước 1: Đạo hàm tử mẫu, ta được: \(\dfrac{\dfrac{1}{2}\left(x+3\right)^{-\dfrac{1}{2}}}{1}\)

Bước 2: Thay điểm cần tính giới hạn: (x=1)

ta sẽ được \(\dfrac{1}{4}\)

Vậy \(lim_{x\rightarrow1}\dfrac{\sqrt{x+3}-2}{x-1}=\dfrac{1}{4}\)

\(\Rightarrow a=1;b=4\)

Vậy S=4a-b=0

NV
19 tháng 4 2022

29.

\(y'=\dfrac{1}{3}x^3-\dfrac{1}{2}\left(m^2+1\right)x^2+\left(m^2-7m+12\right)x\)

\(y''=x^2-\left(m^2+1\right)x+m^2-7m+12\)

Pt \(y''=0\) có 2 nghiệm trái dấu khi và chỉ khi:

\(1.\left(m^2-7m+12\right)< 0\)

\(\Leftrightarrow3< m< 4\)

\(\Rightarrow\) Không có giá trị nguyên nào của m thỏa mãn

30.

\(y'=x^2-2\left(2m+1\right)x-m\ge0;\forall x\)

\(\Leftrightarrow\Delta'=\left(2m+1\right)^2+m\le0\)

\(\Leftrightarrow4m^2+5m+1\le0\)

\(\Leftrightarrow-1\le m\le-\dfrac{1}{4}\)

\(\Rightarrow\) Có 1 giá trị nguyên của m thỏa mãn (\(m=-1\))

NV
5 tháng 4 2022

\(y'=\left(x^3\right)'-\left(3x\right)'+\left(4\right)'=3x^2-3\)

Hệ số góc tiếp tuyến tại điểm có hoành độ -2 là \(y'\left(-2\right)\)

\(y'\left(-2\right)=3.\left(-2\right)^2-3=9\)

1 tháng 7 2021

mình làm vài câu cho bạn tham khảo,các câu còn lại thì bạn làm tương tự thôi

23.\(\sqrt{14-2\sqrt{33}}=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\left|\sqrt{11}-\sqrt{3}\right|=\sqrt{11}-\sqrt{3}\)

28. \(\sqrt{25-4\sqrt{6}}=\sqrt{\left(2\sqrt{6}\right)^2-2.2\sqrt{6}.1+1^2}=\sqrt{\left(2\sqrt{6}-1\right)^2}\)

\(=\left|2\sqrt{6}-1\right|=2\sqrt{6}-1\)

29.\(\sqrt{14-8\sqrt{3}}=\sqrt{14-2\sqrt{48}}=\sqrt{\left(\sqrt{8}\right)^2-2\sqrt{6}.\sqrt{8}+\left(\sqrt{6}\right)^2}\)

\(=\sqrt{\left(\sqrt{8}-\sqrt{6}\right)^2}=\left|\sqrt{8}-\sqrt{6}\right|=\sqrt{8}-\sqrt{6}\)

 

1 tháng 7 2021

nhìn rối mắt quá bạn ơi

29 tháng 12 2021

Câu 5: 

\(\Leftrightarrow-x^2+7x-9+2x-9=0\)

\(\Leftrightarrow x^2-9x+18=0\)

=>x=3

=>Chọn A

NV
15 tháng 3 2022

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{mx^2-\left(m+3\right)x+3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(mx-3\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(mx-3\right)=m-3\)

\(f\left(1\right)=m^2-15\)

Hàm liên tục tại \(x=1\) khi:

\(m-3=m^2-15\Rightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)

\(4^2+\left(-3\right)^2=25\)

18 tháng 5 2022

\(\begin{array} {l} 13)\\ n_{HCHO}=\dfrac{1,2}{30}=0,04(mol)\\ HCHO\xrightarrow{+AgNO_3/NH_3,t^o}4Ag\\ n_{Ag}=4n_{HCHO}=0,16(mol)\\ m=0,16.108=17,28(g)\\ \to A\\ 14)\\ X:C_nH_{2n}\\ n_{Br_2}=\dfrac{8}{160}=0,05(mol)\\ C_nH_{2n}+Br_2\to C_nH_{2n}Br_2\\ n_{C_nH_{2n}}=n_{Br_2}=0,05(mol)\\ M_{C_nH_{2n}}=14n=\dfrac{1,4}{0,05}=28(g/mol)\\ n=2\\ X:C_2H_4\\ \to A \end{array}\)

NV
5 tháng 4 2022

\(y'=3x^2-2\)

hệ số góc tiếp tuyến tại điểm có hoành độ \(x_0=-1\) là \(y'\left(-1\right)\)

\(y'\left(-1\right)=3.\left(-1\right)^2-2=1\)

NV
20 tháng 12 2022

ĐKXĐ: \(x>0\)

\(log_2\left(x^2+4\right)-log_2x-3=0\)

\(\Leftrightarrow log_2\left(x^2+4\right)=log_2x+3\)

\(\Leftrightarrow log_2\left(x^2+4\right)=log_2\left(9x\right)\)

\(\Leftrightarrow x^2+4=9x\)

\(\Leftrightarrow x^2-9x+4=0\)

\(\Rightarrow x_1+x_2=9\) theo định lý Viet