Cho hình thang vuông ABCD (AB // CD) có góc A =90o, cạnh BC vuông góc với đường chéo BD, đường phân giác của góc BDC cắt cạnh BC tại I. Cho biết độ dài AB= 2,5 và góc ABD = 60o.
a) C/m: ΔIDC là tam giác cân.
b) Tính BC, AD, DC và đường phân giác DI.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
Do đo: ΔBDC\(\sim\)ΔHBC
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
HD=10-3,6=6,4(cm)
a, Xét Δ BDC và Δ HBC, có :
\(\widehat{DBC}=\widehat{BHC}=90^o\)
\(\widehat{BCD}=\widehat{HCB}\) (góc chung)
=> Δ BDC ∾ Δ HBC (g.g)
b, Ta có : Δ BDC ∾ Δ HBC (cmt)
=> \(\dfrac{DC}{BC}=\dfrac{BC}{HC}\)
=> \(\dfrac{10}{6}=\dfrac{6}{HC}\)
=> \(HC=\dfrac{6.6}{10}\)
=> HC = 3,6 (cm)
Ta có : DC = DH + HC
=> 10 = DH + 3,6
=> DH = 6,4 (cm)
c, Ta có : Δ BDC ∾ Δ HBC (cmt)
=> \(\dfrac{BC}{HC}=\dfrac{BD}{HB}\)
Xét Δ DHB và Δ BHC, có :
\(\widehat{DHB}=\widehat{BHC}=90^o\)
\(\dfrac{BC}{BD}=\dfrac{HC}{HB}\) (cmt)
=> Δ DHB ∾ Δ BHC (c.g.c)
=> \(\dfrac{DH}{BH}=\dfrac{HB}{HC}\)
=> \(HB^2=DH.HC\)
a, Xét △DAB và △CBD có:
∠DAB=∠DCB (= 90 độ), AB//DC => ∠ABD=∠BDC (=60 độ) (so le trong)
=> △DAB ∼ △CBD (g.g)
Ta có: ∠ADB=180 độ - 90 độ - 60 độ = 30 độ
mà ∠ADB=∠DCB => ∠DCB=30 độ (1)
Ta có: ∠BDI=∠CDI= \(\dfrac{60độ}{2}\)= 30 độ (2)
Từ (1), (2) ta có: ∠DCB=∠CDI= 30 độ
=> △IDC cân tại I