(2x+3)^1998 + ( 3y -5 )^2000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Không chắc đâu:v
a) Ta luôn có \(\left(x-1\right)^2+\left(2x-y-3\right)^2+\left(y+z\right)^2\ge0\forall x,y,z\)
Để đẳng thức xảy ra tức là \(\left(x-1\right)^2+\left(2x-y-3\right)^2+\left(y+z\right)^2=0\) (theo đề bài)
Thì \(\left\{{}\begin{matrix}x=1\\y=2x-3=2.1-3=-1\\z=-y=1\end{matrix}\right.\)
Vậy...
b) Ta luôn có \(VT\ge0\) với mọi x, y. Mà theo đề bài \(VT\le0\)
Do vậy \(VT=0\Leftrightarrow\left(2x+3\right)^{1998}+\left(3y-5\right)^{2000}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{3}{2}\\y=\frac{5}{3}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\left(2x-5\right)^{2000}\ge0\forall x\)
\(\left(3y+4\right)^{2002}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\forall x;y\)
Mà theo GT : \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)
Dấu \("="\) xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(x=\dfrac{5}{2};y=-\dfrac{4}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1, S1 = (-2) + (-2) +..+ (-2).
Có SS (-2) là :
(1997 - 1) : 4 +1 = 500 (số ).
Tổng số (-2) là: 500 x (-2) = (-1000)
Bạn chờ mình làm tiếp nha
Các bạn ơi làm giúp mình vs ạ,mình đang cần gấp lắm rồi!!!!HELP MEEEEEEEEEEEEEE
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(2x+3\right)^{1998}+\left(3y-5\right)^{2000}\le0\)
\(\left\{{}\begin{matrix}\left(2x+3\right)^{1998}\ge0\\\left(3y-5\right)^{2000}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(2x+3\right)^{1998}+\left(3y-5\right)^{2000}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x+3\right)^{1998}+\left(3y-5\right)^{2000}\ge0\\\left(2x+3\right)^{1998}+\left(3y-5\right)^{2000}\le0\end{matrix}\right.\)
\(\Rightarrow\left(2x+3\right)^{1998}+\left(3y-5\right)^{2000}=0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(2x+3\right)^{1998}=0\Rightarrow2x+3=0\Rightarrow2x=-3\Rightarrow x=-\dfrac{3}{2}\\\left(3y-5\right)^{2000}=0\Rightarrow3y-5=0\Rightarrow3y=5\Rightarrow y=\dfrac{5}{3}\end{matrix}\right.\)
2)
\(\left(-16\right)^{11}=-\left[\left(2^4\right)^{11}\right]=-\left(2^{44}\right)\)
\(\left(-32\right)^9=-\left[\left(2^5\right)^9\right]=-\left(2^{45}\right)\)
\(-\left(2^{44}\right)>-\left(2^{45}\right)\Rightarrow\left(-16\right)^{11}>\left(-32\right)^9\)
\(\left(2^2\right)^3=2^8\)
\(2^{2^3}=2^8\)
\(2^8=2^8\Rightarrow\left(2^2\right)^3=2^{2^3}\)
\(2^{3^2}=2^9\)
\(2^{2^3}=2^8\)
\(2^9>2^8\Rightarrow2^{3^2}>2^{2^3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(\left(3x-2\right)^5=-243\)
\(\Rightarrow\left(3x-2\right)^5=\left(-3\right)^5\)
\(\Rightarrow3x-2=-3\Rightarrow x=\dfrac{-1}{3}\)
c) Vì \(\left(2x-5\right)^{2000}\ge0\forall x;\left(3y+4\right)^{2002}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\forall x,y\)
Mà theo bài ra \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right........\)