Tính tổng S= -1-1/2-1/4-1/8-1/16-......-1/1024
Giúp mik nha.Mình tick cho !!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
Cộng thêm 1/2 vào biểu thức đã cho, có:
S + 1/2= 1/2+1/4+ 1/8+ 1/16+1/32+1/64+1/128
Nhận xét:
BÀI 1:
\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(S=1+\frac{1}{1.2}+\frac{1}{2.2}+\frac{1}{2.4}+\frac{1}{4.4}+\frac{1}{4.8}\)
\(S=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}\)
\(S=1+1-\frac{1}{8}\)
\(S=\frac{15}{8}\)
BÀI 2:
\(A=1.2+2.3+3.4+...+98.99\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+98.99.3\)
\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99\)
\(3A=\left(1.2.3+2.3.4+3.4.5+98.99.100\right)-\left(1.2.3+2.3.4+...+97.98.99\right)\)
\(3A=98.99.100\)
\(3A=970200\)
\(\Rightarrow A=970200:3\)
\(A=323400\)
CHÚC BN HỌC TỐT!!!
Xét TH1 : ( S < 8/9 )
\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2};\frac{1}{3\cdot3}< \frac{1}{2\cdot3};...;\frac{1}{9\cdot9}< \frac{1}{8\cdot9}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\)
hay \(S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\)
\(S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(S< 1-\frac{1}{9}=\frac{8}{9}\left(1\right)\)
TH2 : ( S > 2/5 )
\(\frac{1}{2\cdot2}>\frac{1}{2\cdot3};\frac{1}{3\cdot3}>\frac{1}{3\cdot4};...;\frac{1}{9\cdot9}>\frac{1}{9\cdot10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
hay \(S>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(S>\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\left(2\right)\)
Từ (1) và (2) => đpcm
Ko tk thì ko phải là ng` nx rồi :)
a)
Vì 2/9=6/27=8/36=12/54=16/72=18/81 nên:
2/9+6/27+8/36+12/54+16/72+18/81=
2/9+2/9+2/9+2/9+2/9+2/9=
2/9*6=
12/9=
4/3
Vậy 2/9+6/27+8/36+12/54+16/72+18/81=4/3
b)
Ta có:
1-2/5=3/5
1-2/7=5/7
1-2/9=7/9
...
1-2/99=97/99
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=
3/5*5/7*7/9*...*97/99=
(3*5*7*...*97)/(5*7*9*...*99)=
3/99=
1/33
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=1/33
c)
Gọi biểu thức 1/2+1/4+1/8+1/16+...+1/1024 là S,ta có:
S=1/2+1/4+1/8+1/16+...+1/1024
S*2=1+1/2+1/4+1/8+...+1/512
S*2-S=(1+1/2+1/4+1/8+...+1/512)-(1/2+1/4+1/8+1/16+...+1/1024)
S=1-1/1024
S=1023/1024
Vậy 1/2+1/4+1/8+1/16+...+1/1024=1023/1024
S=1/2+1/4+1/8+1/16+1/32+1/64
S=1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64
S=1-1/64
S=63/64