K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

Gọi 4 số lẻ liên tiếp là 2k+1, 2k+3, 2k+5, 2k+7 ( k thuộc tập số nguyên)

Ta có: 2k+1+2k+3+2k+5+2k+7=8k+16

                                                 =8(k+2) chia hết cho 8 vì 8 chia hết cho 8 => đpcm

Gọi 4 số chẵn liên tiếp là 2k, 2k+2, 2k+4, 2k+6

Ta có: 2k+2k+2+2k+4+2k+6=8k+12 không chia hết cho 8 vì 12 không chia hết cho 8 => đpcm

Vì 8k chi hết cho 8 ( do 8 chia hết cho 8) nên 12 chia 8 dư bao nhiêu thì tổng chia 8 dư bấy nhiêu

Ta có 12 chia 8 dư 4 nên tổng 4 số chẵn liên tiếp cũng sẽ chia 8 dư 4.

27 tháng 11 2015

=Ta co: (7^0+7^1+7^2+7^3)+(7^4+7^5+7^6+7^7)+...+(7^28+7^29+7^30+7^31)

=(7^0+7^1+7^2+7^3)+7^4×(7^0+7^1+7^2+7^3)+...+7^28×(7^0+7^1+7^2+7^3)

=400+7^4×400+...+7^28×400

=400×1+7^4×400+...+7^28×400

=400×(1+7^4+...+7^28)

=400×(1+7^4+...7^28) chia het cho 25( vi 400 chia het cho 25)

16 tháng 11 2017

A=2+22+23+24+....+230

=(2+22+23)+(24+25+26)+...+(228+229+230)

=1(2+22+23)+23(2+22+23)+...+227(2+22+23)

=1.7+23.7+25.7+...+227.7

=7(1+23+25+...+227)

vì 7:7-->A:7

6 tháng 1 2018

\(A=2+2^2+2^3+2^4+...+2^{29}+2^{30}\)

    \(=\left(2^{ }+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)

      \(=2.\left(1+2+2^2\right)+2^{^{ }4}.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)

      \(=2.7+2^4.7+...+2^{28}.7\)

      \(=7.\left(2+2^4+...+2^{28}\right)\)

       \(\Rightarrow A⋮7\)

         

a: \(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{2008}\right)⋮7\)

b: \(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)