Tìm x thỏa mãn đề bài biết : 20/x<4/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, Ta có : 2xy + x + y = 7
=> 2(2xy + x + y) = 2 . 7
=> 4xy + 2x + 2y = 14
=> (4xy + 2x) + 2y + 1 = 14 + 1
=> 2x(2y + 1) + (2y + 1) = 15
=> (2x + 1)(2y + 1) = 15
=> 2x + 1;2y + 1 ∈ Ư(15) ∈ {-15;-5;-3;-1;1;3;5;15}
Vậy ta có bảng :
2x + 1 | -15 | -1 | -3 | -5 | 15 | 1 | 3 | 5 |
2y + 1 | -1 | -15 | -5 | -3 | 1 | 15 | 5 | 3 |
x | -8 | -1 | -2 | -3 | 7 | 0 | 1 | 2 |
y | -1 | -8 | -3 | -2 | 0 | 7 | 2 | 1 |
=> (x;y) = (-8;-1);(-1;-8);(-2;-3);(-3;-2);(7;0);(0;7);(1;2);(2;1)
\(\Leftrightarrow x^2-1=2y^2\)
Do vế phải chẵn \(\Rightarrow\) vế trái chẵn \(\Leftrightarrow x\) lẻ
\(\Rightarrow x=2k+1\)
Pt trở thành: \(\left(2k+1\right)^2-1=2y^2\Leftrightarrow2\left(k^2+k\right)=y^2\)
Vế trái chẵn \(\Rightarrow\) vế phải chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn
\(\Rightarrow y=2\)
\(\Rightarrow x^2-9=0\Rightarrow x=3\)
Vậy \(\left(x;y\right)=\left(3;2\right)\)
Bài 4:
\(a,2^{30}=\left(2^3\right)^{10}=8^{10};3^{20}=\left(3^2\right)^{10}=9^{10}\\ Vì:8^{10}< 9^{10}\left(Vì:8< 9\right)\Rightarrow2^{30}< 3^{20}\\ b,9^{10}.27^5=\left(3^2\right)^{10}.\left(3^3\right)^5=3^{20}.3^{15}=3^{35}\\ 243^7=\left(3^5\right)^7=3^{35}\\ Vì:3^{35}=3^{35}\Rightarrow243^7=9^{10}.27^5\)
20/x < 4/5
=> x < 20 : 4/5
=> x < 25
Vay x < 25
k minh nha