Tìm số nguyên x thỏa mãn -16/13 < x < 11/10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
Đáp án cần chọn là: D
15 41 + − 138 41 ≤ x < 1 2 + 1 3 + 1 6 − 3 ≤ x < 1
x∈{−3;−2;−1;0}
Vậy có tất cả 4 giá trị của x
bài 1
[(x+2)/1010]+ [(x+2)/1111]= [(x+2)/1212]+[(x+2)/1313]
=>[(x+2)/1010]+[(x+2)/1111] - [(x+2)/1212]-[(x+2)/1313] = 0
=>(x+2).[(1/1010)+(1/1111)-(1/1212)-(1/1313)=0
Vì [(1/1010)+(1/1111)-(1/1212)-(1/1313)] khác 0
=>x+2=0
=>x=-2
Ta có phương trình \(\frac{x}{7}+\frac{y}{11}+\frac{z}{13}=\frac{946053}{99999}\)
\(\Leftrightarrow\frac{143x+91y+77z}{1001}=\frac{947}{1001}\)
\(\Leftrightarrow143x+91y+77z=947\)(1)
\(\Leftrightarrow7\left(13y+11z\right)=947-143x\)
Dễ thấy \(VT⋮7\Rightarrow947-143x⋮7\)
Mà y,z nguyên dương nên VT > 0 do đó \(947-143x>0\Leftrightarrow x\le6\)
+) x = 1 thì \(947-143.1=804\)không chia hết cho 7
+) x = 2 thì \(947-143.2=661\)không chia hết cho 7
+) x = 3 thì \(947-143.3=518\) chia hết cho 7 (tm)
+) x = 4 thì \(947-143.4=375\)không chia hết cho 7
+) x = 5 thì \(947-143.5=232\)không chia hết cho 7
+) x = 6 thì \(947-143.5=89\)không chia hết cho 7
Sau khi xét ta tìm được x = 3
Thay x = 3 vào phương trình (1), ta được \(13y+11z=74\)
\(\Leftrightarrow11z=74-13y\)
Vì z nguyên dương nên VT > 0 nên 74 - 13y > 0 và \(74-13y⋮11\)
\(\Rightarrow y< 6\)
+) y = 1 thì 74 - 13y = 61 không chia hết cho 11
+) y = 2 thì 74 - 13y = 48 không chia hết cho 11
+) y = 3 thì 74 - 13y = 35 không chia hết cho 11
+) y = 4 thì 74 - 13y = 22 chia hết cho 11 (tm)
+) y = 5 thì 74 - 13y = 9 không chia hết cho 11
Tóm lại, y = 4
Khi đó 11z = 22 nên z = 2
Vậy tìm được bộ ba số (x;y;z) thỏa mãn là (3;4;2)
x∈\(\left\{\right\}\)
x =0