F=1/1+√5+1\√5+√9+1/√9+√13+...+1/√2013+√2017
C=1/√1+√2 +1/√2+√3+....+1/√n-1 +√n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: =23/27-11/17+4/27+28/17
=23/27+4/27+28/17-11/17
=1+1=2
b: \(=\dfrac{2}{3}\cdot\left(\dfrac{7}{9}+\dfrac{2}{9}\right)-\dfrac{2}{9}\)
=2/3-2/9
=6/9-2/9
=4/9
c: \(=\dfrac{11}{5}\cdot\dfrac{7}{3}-\dfrac{1}{3}\cdot\dfrac{11}{5}\)
=11/5(7/3-1/3)
=11/5*2
=22/5
d: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2024}{2023}=\dfrac{2024}{2}=1012\)
e: \(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2022}{2023}=\dfrac{1}{2023}\)
`@` `\text {Ans}`
`\downarrow`
`a.`
`A=(1/2-7/13-1/3)+(-6/13+1/2+1 1/3)`
`= 1/2 - 7/13 - 1/3 - 6/13 + 1/2 + 1 1/3`
`= (1/2 + 1/2) + (-7/13 - 6/13) + (-1/3 + 1 1/3) `
`= 1 - 1 + 1`
`= 1`
`b.`
`B=0,75+2/5+(1/9-1 1/2+5/4)`
`= 3/4 + 2/5 + 1/9 - 3/2 + 5/4`
`= (3/4+5/4)+ 1/9 + 2/5 - 3/2`
`= 2 + 1/9 - 11/10`
`= 19/9 - 11/10`
`= 91/90`
`c.`
`(-5/9).3/11+(-13/18).3/11`
`= 3/11*[(-5/9) + (-13/18)]`
`= 3/11*(-23/18)`
`= -23/66`
`d.`
`(-2/3).3/11+(-16/9).3/11`
`= 3/11* [(-2/3) + (-16/9)]`
`= 3/11*(-22/9)`
`= -2/3`
`e.`
`(-1/4).(-2/13)-7/24.(-2/13)`
`= (-2/13)*(-1/4-7/24)`
`= (-2/13)*(-13/24)`
`= 1/12`
`f.`
`(-1/27).3/7+(5/9).(-3/7)`
`= 3/7*(-1/27 - 5/9)`
`= 3/7*(-16/27)`
`= -16/63`
`g.`
`(-1/5+3/7):2/11+(-4/5+4/7):2/11`
`=[(-1/5+3/7)+(-4/5+4/7)] \div 2/11`
`= (-1/5+3/7 - 4/5 + 4/7) \div 2/11`
`= [(-1/5-4/5)+(3/7+4/7)] \div 2/11`
`= (-1+1) \div 2/11`
`= 0 \div 2/11 = 0`
Ta có:
\(\frac{1}{n\sqrt{n+4}+\left(n+4\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+4\right)}\left(\sqrt{n}+\sqrt{n+4}\right)}\)
\(=\frac{\sqrt{n+4}-\sqrt{n}}{4\sqrt{n\left(n+4\right)}}=\frac{1}{4}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+4}}\right)\)
Áp dụng vào bài toán ta được
\(\frac{1}{1\sqrt{5}+5\sqrt{1}}+\frac{1}{5\sqrt{9}+9\sqrt{5}}+...+\frac{1}{2009\sqrt{2013}+2013\sqrt{2009}}\)
\(=\frac{1}{4}.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{9}}+...+\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2013}}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{\sqrt{2013}}\right)\)
Sr cậu Đoàn Thục Quyên nha , đang làm tìm số cuối thì lú mất KL ra là tổng
Cái dòng KL sai r nhé cậu
Còn nguyền phần trên đúng rồi
Cậu thay dòng KL là :
Vậy : chứ số cuối của tổng trên là 5
#hoc_tot#
Ta dễ dàng nhận ra các số trên đều có dạng : 4k + 1
\(1^1+2^5+3^9+4^{13}+.....+504^{2013}+505^{2017}\)
\(=\left(.....1\right)+\left(.....2\right)+........+\left(.....4\right)+\left(......5\right)\)
Ta thấy : tổng A có 50 nhóm và thừa 5 số hạng cuối
=> Chữ số tận cùng của 50 là :
50 = 10 . 5 ( có chứa 10 )
=> Tổng của 50 nhóm đó là 0
=> Tổng 5 số hạng cuối là : 5
Vậy : tổng trên = 5
\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
Trừ theo vế:
\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)
\(4B=5^{2010}-1\)
\(B=\frac{5^{2010}-1}{4}\)
\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)
\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)
Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)
\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)
Trừ theo vế:
\(3X-X=3^n-3^0=3^n-1\)
\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)
\(\frac{1}{1\times5}+\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{2013\times2017}\)
\(=4\times\left(\frac{1}{1\times5}+\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{2013\times2017}\right)\)
\(=4\times\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{2013}-\frac{1}{2017}\right)\)
\(=4\times\left(1-\frac{1}{2017}\right)\)
\(=4\times\frac{2016}{2017}\)
\(=\frac{8064}{2017}\)
7^6+7^5+7^4 chia hết cho 11
= 7^4.2^2+7^4.7+7^4
= 7^4.(2^2+7+1)
= 7^4. 11
Vì tích này có số 11 nên => chia hết cho 7
Tính gt bt nhé
Giúp vs a