K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

Ta thấy tam giác ACD và tam giác BCD có chung đáy cd , chiều cao bằng nhau và bằng chiều cao hình thang ABCD . Nên Sacd=Sbcd. Suy ra Saod=Sboc

b) cho diện tích abo=a thì chắc mình mới làm được nhé....

Xét tam giác aob và cod có

aob=cod (đối đỉnh), abo=cdo(so le trong do ab//cd)

Suy ra 2 tam giác này đồng dạng

=> (Ao/oc)^2=Saob/Scod=a/b

Xét tam giác aod và cdo chung đường cao hạ từ d xuống ac. Suy ra Saod/Scod=ao/co= căn (a/b)

=> Saod= căn (a/b) * b= căn (ab)

 

 

 

9 tháng 4 2021

Kết quả đúng ạ mà mik có cách ngắn hơn rồi, cảm ơn bạn đã giúp ạ😄

17 tháng 4 2017

Giải bài 39 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 39 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

4 tháng 5 2022

 

A B C D O

a/

Hai tg ABD và tg ABC có chung AB và đường cao từ D->AB = đường cao từ C->AB nên \(S_{ABD}=S_{ABC}\) 

Hai tg này có phần diện tích chung là \(S_{ABO}\Rightarrow S_{AOD}=S_{BOC}\)

b/

Hai tg ABC và tg ACD có đg cao từ D->AB = đường cao từ B->CD nên

\(\dfrac{S_{ABC}}{S_{ACD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\)

Hai tg trên có chung AC nên

\(\dfrac{S_{ABC}}{S_{ACD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)

Hai tg ABO và tg AOD có chung AO nên

\(\dfrac{S_{ABO}}{S_{AOD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)

\(\Rightarrow S_{AOD}=2xS_{ABO}=2x3,5=7cm^2\)

\(\Rightarrow S_{ABD}=S_{ABO}+S_{AOD}=3,5+7=10,5cm^2\)

Hai tg ABD và tg BCD có đg cao từ D->AB = đường cao từ B->CD nên

\(\dfrac{S_{ABD}}{S_{BCD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\Rightarrow S_{BCD}=2xS_{ABD}=2x10,5=21cm^2\) 

\(\Rightarrow S_{ABCD}=S_{ABD}+S_{BCD}=10,5+21=31,5cm^2\)

a: Xét ΔFAB và ΔFCD có

góc FAB=góc FCD

góc AFB=góc CFD

=>ΔFAB đồng dạng với ΔFCD

b: ΔFAB đồng dạng với ΔFCD

=>FA/FC=FB/FD

=>FA*FD=FB*FC