K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

G=1-3+32-33+34-...-399+3100

3G=3-32+33-34+35-....-3100+3101

3G+G=(3-32+33-34+35-....-3100+3101)+(1-3+32-33+34-...-399+3100)

4G = 3101+1

G=\(\frac{3^{101}+1}{4}\)

10 tháng 8 2019

\(A=3^1+3^2+3^3+3^4+...+3^{199}\)

\(3A=3^2+3^3+3^4+3^5+...+3^{200}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{200}\right)-\left(3^1+3^2+3^3+...+3^{199}\right)\)

\(2A=3^{200}-3^1\)

\(A=\frac{3^{200}-3}{2}\)

=))

10 tháng 8 2019

Đặt \(A=3^1+3^2+3^3+...+3^{199}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{200}\)

Lấy 3A trừ A theo vế ta có : 

\(3A-A=\left(3^2+3^3+3^4+..+3^{200}\right)-\left(3^1+3^2+3^3+..+3^{199}\right)\)

\(2A=3^{200}-1\)

\(A=\frac{3^{200}-1}{2}\)

Vậy \(3^1+3^2+3^3+..+3^{199}=\frac{3^{200}-1}{2}\)

31 tháng 8 2021

\(A=\)\(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

\(3A=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)

\(4A=-1-\frac{1}{3^{51}}\)

\(A=\frac{-1-\frac{1}{3^{51}}}{4}\)

k cho mik nha

22 tháng 9 2020

Đặt \(D=3-3^2+3^3-3^4+...+3^9-3^{10}+3^{11}\)

=> \(3D=3^2-3^3+3^4-3^5+...+3^{10}-3^{11}+3^{12}\)

Cộng vế 2 BT trên ta được:

\(D+3D=\left(3-3^2+...+3^{11}\right)+\left(3^2-3^3+...+3^{12}\right)\)

\(\Leftrightarrow4D=3^{12}+3\)

\(\Rightarrow D=\frac{3^{12}+3}{4}\)

7 tháng 7 2018

{ x2 - [ 62 - ( 82 - 9.7)3 - 7.5]3 - 5.3 }3 = 1

{ x2 + [ 36 - (64 - 63)3 - 35]3 - 15}3 = 1

[ x2 - ( 36 - 13 - 35 ) - 15 ]3 = 1

[ x2 - ( 36 - 1 - 35 ) - 15]3 = 1

[ x2 - ( 35 - 35 ) - 15]3 = 1

[ x2 - 0 - 15]3 = 1

( x2 - 15 )3 = 1

<=> ( x2 - 15)3 = 13

=> x2 - 15 = 1

<=> x2 = 16

=> x = 4