Cho tam giác ABC có đường trung tuyến BD và CE bằng nhau . Chứng minh tam giác ABC là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔIBC cân tại I
2: Xét ΔABD và ΔACE có
\(\widehat{A}\) chung
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
a﴿ Tam giác ABC có MA=MC; NA=NB nên MN là đường trung bình của tam giác ABC
=> MN//BC; MN=1/2BC ﴾1﴿.
Tam giác BGC có PG=BP; QG=QC nên PQ là đường trung bình của tam giác BGC
=> PQ//BC; PQ=1/2BC ﴾2﴿.
từ ﴾1﴿ và ﴾2﴿
suy ra MN//PQ; MN=1/2PQ.
Tứ giác MNPQ có MN//PQ; MN=1/2PQ.
vậy MNPQ là hình bình hành.
b﴿ câu này là dạng tìm điều kiện là dạng khó nhất trong ba dạng là dễ nhất là chứng minh tứ giác là hình gì, mình chỉ cần thuộc lí thuyết dò sẽ ra; tiếp theo là tứ giác này là hình gì, mình phải tự tìm; cuối cùng là dạng tìm điều kiện để trở thành hình khác thì mình phải giả sử một đặc điểm để trở thành hình đó rồi tìm mối tương quan.
c1:Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm Một góc vuông.
Giả sử GÓc N=90 độ Nối AG. Vì NA=NB;PQ=PB nên NP là đường trung bình của tam giác ABG
=> NP//AG mà NP vuông góc với MN.
từ hai điều này suy ra AG cũng vuông góc với MN. lại có MN//BC﴾cmt﴿
từ hai điều này lại suy ra AG vuông góc với BC.
tam giác ABC có AG vừa là đường trung tuyến vừa là đường cao nên tam giác ABC cân tại A Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
C2: Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm hai đuognừ chéo bằng nhau Giả sử MP=NQ ﴾1﴿
ta có: MNPQ là hình bình hành nên GN=GQ; GP=GM G là trọng tâm của tam giác ABC nên BP=1/3BM; CQ=1/3CN.
từ hai điều này suy ra: BP=1/2MP; CQ=1/2QN ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ suy ra MP+BP=NQ+CQ hay BM=CN
Tam giác ABC có hai đuognừ trung tuyến bằng nhau nên tam giác ABC cân tại A
Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
Bởi vì cách 2 nó có cái điều mà mình tự cm ở lớp 7 nên nhiều khi không hay
c﴿Nếu BM và CN vuông góc với nhau hay PM và QN cũng vuông góc với nhau.
Hình bình hành MNPQ có hai đuognừ chéo PM và QN vuông góc với nhau, nên MNPQ là hình thoi
Vậy nếu Nếu BM và CN vuông góc với nhau thì MNPQ là hình thoi
a) Tam giác ABC có MA=MC; NA=NB nên MN là đường trung bình của tam giác ABC
=> MN//BC; MN=1/2BC (1).
Tam giác BGC có PG=BP; QG=QC nên PQ là đường trung bình của tam giác BGC
=> PQ//BC; PQ=1/2BC (2).
từ (1) và (2) suy ra MN//PQ; MN=1/2PQ.
Tứ giác MNPQ có MN//PQ; MN=1/2PQ.
vậy MNPQ là hình bình hành.
b) câu này là dạng tìm điều kiện là dạng khó nhất trong ba dạng là dễ nhất là chứng minh tứ giác là hình gì, mình chỉ cần thuộc lí thuyết dò sẽ ra; tiếp theo là tứ giác này là hình gì, mình phải tự tìm; cuối cùng là dạng tìm điều kiện để trở thành hình khác thì mình phải giả sử một đặc điểm để trở thành hình đó rồi tìm mối tương quan.
c1:Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm Một góc vuông.
Giả sử GÓc N=90 độ
Nối AG. Vì NA=NB;PQ=PB nên NP là đường trung bình của tam giác ABG=> NP//AG
mà NP vuông góc với MN. từ hai điều này suy ra AG cũng vuông góc với MN.
lại có MN//BC(cmt) từ hai điều này lại suy ra AG vuông góc với BC.
tam giác ABC có AG vừa là đường trung tuyến vừa là đường cao nên tam giác ABC cân tại A
Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
C2: Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm hai đuognừ chéo bằng nhau
Giả sử MP=NQ (1)
ta có: MNPQ là hình bình hành nên GN=GQ; GP=GM
G là trọng tâm của tam giác ABC nên BP=1/3BM; CQ=1/3CN. từ hai điều này suy ra: BP=1/2MP; CQ=1/2QN (2)
Từ (1) và (2) suy ra MP+BP=NQ+CQ hay BM=CN
Tam giác ABC có hai đuognừ trung tuyến bằng nhau nên tam giác ABC cân tại A( điều này đã được chứng minh ở lớp 7, bạn không cần chứng minh lại)
Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
Bởi vì cách 2 nó có cái điều mà mình tự cm ở lớp 7 nên nhiều khi không hay
c)Nếu BM và CN vuông góc với nhau hay PM và QN cũng vuông góc với nhau.
Hình bình hành MNPQ có hai đuognừ chéo PM và QN vuông góc với nhau, nên MNPQ là hình thoi,.
Vậy nếu Nếu BM và CN vuông góc với nhau thì MNPQ là hình thoi
Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó
Gọi độ dài 3 cạnh DABC lần lượt là a,b,c. Đường cao hạ từ các đỉnh A,B,C là x,y,z. Bán kính đường tròn nội tiếp tam giác ABC = 1. Khi đó ta có
SABC=1/2ax=1/2by=1/2cz=1/2(a+b+c)r
=> ax = by = cz = a+b+c [*]
ta có:
ax = by = cz => a: (1/ x)= b:(1/ y)=c:(1/z)
=> (a+b+c): (1/x+1/y+1/z) = a+b+c
=> (1/x+1/y+1/z) = 1
Giả sử: 0 ≤ x ≤ y ≤ z =>1/x ≥1/y ≥ 1/z => 3/x ≤ 1 => x ≤ 3
Thử từng trường hợp:
*x=1. => Loại
*x=2 =>1/y+1 / z= ½. Mà x,y ϵ Z
=>y,z ϵ {(4,4);(3;6)}
y = z = 4 => 2a = 4b = 4c Áp dụng BDT tam giác vào tam giác ABH thấy ko thỏa mãn=>loại
y=3;z=4⇒2a=3b=4c (loại)
*x=3
x = y = z = 3 => a=b=c=> tam giácABC:đều (đpcm).
bạn tự vẽ hình nhé:
a) Từ E kẻ đường thẳng vuông góc với BC cắt BC tại M
Ta có: góc EBM + 900 + ABH = 1800
=> EBM + ABM = 900 ( 1 )
Mặt khác: trong tam giác BAH vuông tai H, có: BAH + ABH = 900 ( 2 )
Từ ( 1 ) và ( 2 ) ta có: EBM = BAH => 1800 - EBM = 1800 - BAH => EBC = BAI
Xét tam giác EBC và tam giác BAI, có :
EB = AB
EBC = BAI
BC = AI
Suy ra: tam giác EBC = BAI ( c.g.c )
=> PIQ = QCH ( 2 góc tương ứng )
b) Do tam giác EBC = tam giác BAI nên BI = EC ( 2 cạnh tương ứng )
Xét tam giác IPQ có: PIQ + IQP + IPQ = 1800 (3)
Xét tam giác QHC có: HQC + QCH + CHQ = 1800 (4)
=> PIQ + IQP + IPQ = HQC + QCH + CHQ
Mà PIQ = QCH
IQP = HQC ( 2 góc đối đỉnh )
=> IPQ = CHQ = 900
Vậy IB vuông góc với EC cắt nhau tại P
c) Nối I với C, điểm giao nhau của IC và BF là T
Tương tự: câu a và câu b thì IC cũng vuông góc với BF
Trong tam giác IBC có: 3 đường cao là: IH, CP, BT => 3 cạnh này cắt nhau tại 1 điểm
=> Ba đường thẳng AH, CE, BF đồng quy
Ta có: OE=\(\frac{1}{3}CE\) ; OD=\(\frac{1}{3}BD\) mà CE=BD nên OE=OD
\(OB=\frac{2}{3}BD\); \(OC=\frac{2}{3}CE\) mà BD=CE nên OB=OC
\(X\text{ét}\) \(\Delta OBE\) \(=\Delta OCD\) vì OE=OD ; OB=OC; góc EOB=góc DOC (đối đỉnh)
-> góc OBE= góc OCD (góc tương ứng) (1)
Vì OB =OC nên tam giác OBC cân tại B
-> góc OBC=góc OCB ( 2 góc ở đáy) (2)
Từ (1) và (2) suy ra : góc OBE+ góc OBC = góc OCD+ góc OCB
Hay góc ABC = góc ACB
Do đó tam giác ABC cân tại A