Cho tam giác MNP cân tại M. Tia phân giác NA và tia phân giác PB cắt nhau tại O.
a) CMR: NA=PB
b) MO cắt NP tại I . CMR : I là trung điểm của NP.
c) CMR: tam giác IBA cân
d) CMR: BA//NP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔNAM vuông tại M và ΔNDA vuông tại D có
NA chung
NA=ND(gt)
Do đó: ΔNAM=ΔNDA(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{MNA}=\widehat{DNA}\)(hai góc tương ứng)
mà tia NA nằm giữa hai tia NM,NDnên NA là tia phân giác của \(\widehat{NMD}\)hay NA là tia phan giác của \(\widehat{NMP}\)(đpcm)b) Xét ΔNMD có NM=ND(gt)nên ΔNMD cân tại N(Định nghĩa tam giác cân)Xét ΔNMD cân tại N có \(\widehat{MND}=60^0\)(gt)nên ΔNMD đều(Dấu hiệu nhận biết tam giác đều)c) Ta có: ΔNMP vuông tại M(gt)nên \(\widehat{NMP}+\widehat{MPN}=90^0\)(hai góc nhọn phụ nhau)\(\Leftrightarrow\widehat{MPN}=90^0-\widehat{NMP}=90^0-60^0=30^0\)(1)Ta có: NA là tia phân giác của \(\widehat{MNP}\)(cmt)nên \(\widehat{PNA}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^0}{2}=30^0\)(2)Từ (1) và (2) suy ra \(\widehat{APN}=\widehat{ANP}\)Xét ΔANP có \(\widehat{APN}=\widehat{ANP}\)(cmt)nên ΔANP cân tại A(Định lí đảo của tam giác cân)Ta có: ΔANP cân tại A(gt)mà AD là đường cao ứng với cạnh đáy NP(gt)nên AD là đường trung tuyến ứng với cạnh NP(Định lí tam giác cân)hay D là trung điểm của NP(đpcm)GiẢi
a , Xét tam giác MNA và tam giác DNA có :
NM=ND (GT)
Góc NMA = góc NDA =90 độ
NA là cạnh chung
=> Tam giác MNA = tam giác DNA (c.g.c)
=> Góc MNA =góc DNA ( hai góc tương ứng)
=. NA là tia phân giác của góc MNP
b, Tam giác MND là tâm giác đều vì mỗi góc đều có só đo = 60 độ
d,Xetstam giác MBA và tam giác DPA có :
BM=DP(GT)
góc MAB = góc DPA ( đối đỉnh)
MA=DA (hai cạnh tương ứng của tam giác MNA=tam giác DNA)
=> Tam giác MBA = tam giác DPA (c.g.c)
=> AB=PA ( hai cạnh tương ứng)
=> Tam giác APB cận tại A
a, Ta có: Tam giác ABC cân tại A (gt)
=> góc ABC = góc ACB
=> 1/2 góc ABC = 1/2 góc ACB
=> góc IBC = góc ICB
=> Tam giác BIC cân tại I
b, Gọi M là giao điểm của AI với BC
Ta có tam giác BIC cân (câu a)
=> IB = IC ( cặp góc tương ứng )
Xét tam giác ABI và tam giác ACI:
AB = AC (gt)
góc ABI = góc ACI (c.m trên )
IB = IC (c.m trên )
=> Tam giác ABI = tam giác ACI (c.g.c)
=>góc BAI = góc CAI ( cặp góc tương ứng )
Xét tam giác BAM và tam giác CAM
góc BAI = góc CAI (c.m trên)
AB = AC (gt)
góc ABC = góc ACB (gt)
=> tam giác BAM = tam giác CAM (g.c.g)
=>BM = CM (cặp cạnh tương ứng) (1)
=>góc AMB = góc AMC (cặp góc tương ứng )
mà góc AMB + góc AMC = 180o (kề bù)
=> góc AMB = góc AMC = 180o / 2 = 90o (2)
Từ (1)(2) => AI trung trực BC
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
b: Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường trung tuyến
c: Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
a: Xét ΔMNA và ΔMPB có
góc M chung
MN=MP
góc MNA=góc MPB
=>ΔMNA=ΔMPB
b: Xét ΔMNP có
NA,PB là phân giác
NA cắt PB tại O
=>MO là phân giác của gsoc NMP
ΔMNP cân tại M có MI là phân giác
nên I là trung điểm của NP
c: Xét ΔMBI và ΔMAI có
MB=MA
góc BMI=góc AMI
MI chung
=>ΔMBI=ΔMAI
=>BI=AI
=>ΔBAI cân tại I
d: Xét ΔMNP có MB/MN=MA/MP
nên BA//NP