K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: AB = AD (gt)  => A thuộc đường trung trực của BD

CB = CD (gt)   => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: ⇒ˆB=ˆD

Ta có ˆB+ˆD=3600–(100+60)=200

 Do đó ˆB=ˆD=1000

23 tháng 6 2019

mban trl giúp mình câu C luôn nha ạ😭

a) ta thấy ab = ab ; bc = cd

=> tứ giác ABCD là hình bình hành 

=> AC và BD cắt nhau tai trung điểm của mỗi đường 

=> AC là đường trung trực của BD

b) Ta có A + D = 180 

=> D = 180 - 100

=> D= 80

Ta lại có B + C = 180

=> C = 180 - 60

=> C = 120

30 tháng 7 2017

a) Ta có:

AB = AD (gt) ⇒ A thuộc đường trung trực của BD

CB = CD (gt) ⇒ C thuộc đường trung trực của BD

Vậy AC là đường trung trực của BD

b) Xét ΔABC và ΔADC có:

   AB = AD (gt)

   BC = DC (gt)

   AC cạnh chung

⇒ ΔABC = ΔADC (c.c.c)

Giải bài 3 trang 67 Toán 8 Tập 1 | Giải bài tập Toán 8

21 tháng 4 2017

a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD

CB = CD (gt) => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

BC = DC (gt)

AC cạnh chung

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: \(\widehat{B}=\widehat{D}\)

Ta có \(\widehat{B}+\widehat{D}=360^o-\left(100^o+60^o\right)=200^o\)

Do đó \(\widehat{B}=\widehat{D}=100^o\)

21 tháng 4 2017

Bài giải:

a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD

CB = CD (gt) => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

BC = DC (gt)

AC cạnh chung

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: ⇒B^=D^

Ta có B^+D^=3600−(100+60)=200

Do đó B^=D^=1000

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\) và \(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-g-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)

14 tháng 7 2015

bạn hỏi thế này thì chả ai muốn làm -_- dài quá 

28 tháng 12 2015

Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0