K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔGDB và ΔMDC có 

DG=DM(gt)

\(\widehat{GDB}=\widehat{MDC}\)(hai góc đối đỉnh)

DB=DC(D là trung điểm của BC)

Do đó: ΔGDB=ΔMDC(c-g-c)

Suy ra: \(\widehat{DGB}=\widehat{DMC}\)(hai góc tương ứng)

mà \(\widehat{DGB}\) và \(\widehat{DMC}\) là hai góc ở vị trí so le trong

nên BG//MC(Dấu hiệu nhận biết hai đường thẳng song song)

hay CM//BE(Đpcm)

a: Xét ΔABC có

AI,BE,CF vừa là trung tuyến vừa đồng quy tại G

=>G là trọng tâm của ΔABC

=>BG=2GE; CG=2GFl AG=2GI

=>BG=GN; CG=GP; AG=GM

Gọi O là giao của PM và BG

Xét tứ giác ABMN có

G là trung điểm chung của AM và BN

=>ABMN là hình bình hành

=>AN=BM

Xét tứ giác APMC có

G là trung điểm của AM và PC

=>APMC là hình bình hành

=>AP=MC

Xét tứ giác BPNC có

G là trung điểm chung của BN và PC

=>BPNC là hình bình hành

=>BP=NC và NP=BC

Xet ΔMNP và ΔABC có

MN=AB

NP=BC

MP=AC

=>ΔMNP=ΔABC

b: Xét tứ giác BPGM có

GP//BM

GP=BM

=>BPGM là hình bình hành

=>O là trung điểm của BG và PM

=>BO=OG=GE=EN

=>NG=2/3NO

Xét ΔMNP có

NO là trung tuyến

NG=2/3NO

=>G là trọng tâm của ΔMNP

a: Xét tứ giác BGCN có 

D là trung điểm của đường chéo BC

D là trung điểm của đường chéo GN

Do đó: BGCN là hình bình hành

14 tháng 6 2020

tự kẻ hình nghen:33333

a) vì AD cắt BE tại G mà AD, BE là hai đường trung tuyến=> G là trọng tâm của tam giác ABC

=> EG=1/3BE, BG=2/3BE

=> GD=1/3AD, AG=2/3AD

=> EG+EN=2*1/3BE (GE=EN)=> GN=2/3BE=> GN=BG=2/3BE

=> GD+DM=2*1/3AD (GD=DM)=> GM=2/3AD=> GM=AG=2/3AD

b) xét tam giác AGB và tam giác MGN có

GN=BG(cmt)

GM=AG(cmt)

AGB=MGN( đối đỉnh)

tam giác AGB=tam giác MGN (cgc)

MN=AB( hai cạnh tương ứng)

=> BAG=GMN( hai góc tương ứng)

mà BAG so le trong với GMN=> AB//MN

7 tháng 1 2019

vậy cho mình hỏi chút, đường trung tuyến có tính chất gì?

7 tháng 1 2019

Đường trung tuyến là đường từ một đỉnh và đi qua đoạn còn lại và chia đoạn ấy ra làm hai đoạn bằng nhau. Ba đường trung tuyến của tam giác đều đi qua một điểm ( trọng tâm ) . Điểm đó cách mỗi đỉnh một khoảng bằng hai phần ba độ dài đường trung tuyến đi qua đỉnh ấy

a) Ta có DM=DG \Rightarrow GM=2 GD.

Ta lại có G là giao điểm của BD và CE \Rightarrow G là trọng tâm của tam giác ABC

\Rightarrow BG=2 GD.

Suy ra BG=GM.

Chứng minh tương tự ta được CG=GN.

b) Xét tam giác GMN và tam giác GBC có GM=GB (chứng minh trên);

\widehat{MGN}=\widehat{BGC} (hai góc đối đỉnh);

GN=GC (chứng minh trên).

Do đó \triangle GMN=\triangle GBC (c.g.c)

\Rightarrow MN=BC (hai cạnh tương ứng).

Theo chứng minh trên \triangle GMN=\triangle GBC \Rightarrow \widehat{NMG}=\widehat{CBG} (hai góc tương ứng).

Mà \widehat{NMG} và \widehat{CBG} ờ vị trí so le trong nên MN // BC.

20 tháng 4 2023

a) Ta có ��=��⇒��=2��.

Ta lại có  là giao điểm của �� và ��⇒� là trọng tâm của tam giác ���

⇒��=2��.

Suy ra ��=��.

Chứng minh tương tự ta được ��=��.

b) Xét tam giác ��� và tam giác ��� có ��=�� (chứng minh trên);

���^=���^ (hai góc đối đỉnh);

��=�� (chứng minh trên).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

Theo chứng minh trên △���=△���⇒���^=���^ (hai góc tương ứng).

Mà ���^ và ���^ ờ vị trí so le trong nên �� // ��.

25 tháng 4 2020

Câu 1: 

a, Vì AD là trung tuyến \(\Rightarrow AG=\frac{2}{3}AD\)\(\Rightarrow GD=\frac{1}{3}AD\)\(\Rightarrow GM=\frac{2}{3}AD\)(D là trung điểm MG)

\(\Rightarrow AG=GM\)

Vì BE là trung tuyến \(\Rightarrow BG=\frac{2}{3}BE\)\(\Rightarrow GE=\frac{1}{3}BE\)\(\Rightarrow GN=\frac{2}{3}BE\)(E là trung điểm GN)

\(\Rightarrow BG=GN\)

​b, Xét △ANG và △MBG

Có: AG = MG (cmt)

    AGN = MGB (2 góc đối đỉnh)

      NG = BG (cmt)

=> △ANG = △MBG (c.g.c)

=> AN = MB (2 cạnh tương ứng)

và ANG = MBG (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AN // MB (dhnb)

Câu 2: sai đề???