Cho x,y,z thỏa mãn xyz=1
và \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(Tính\)\(P=\left(x^{2015}-1\right)\left(x^{2016}-1\right)\left(x^{2017}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\left(x;y;z,x+y+z\ne0\right)\)
\(\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Rightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Leftrightarrow\left(xy+yz\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow y\left(x+z\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)=0\)
Từ đó \(x=-z\)hoặc \(x=-y\)hoặc \(y=-z\)
-Nếu \(x=-z\Rightarrow z^{2017}+x^{2017}=0\Rightarrow M=\frac{19}{4}+0=\frac{19}{4}\)
Tương tự với các trường hợp còn lại, ta cũng tính được \(M=\frac{19}{4}\)
We have:
\(A=\Sigma_{cyc}\frac{1}{3xy+3zx+x+y+z}\le\frac{1}{3xy+3zx+3\sqrt[3]{xyz}}=\Sigma_{cyc}\frac{1}{3xy+3zx+3}=\Sigma_{cyc}\frac{1}{3\left(xy+zx+1\right)}\)
Dat \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)
\(\Rightarrow A\le\Sigma_{cyc}\frac{1}{3\left(\frac{1}{ab}+\frac{1}{ca}+1\right)}=\Sigma_{cyc}\frac{a}{3\left(a+b+c\right)}=\frac{1}{3}\)
Dau '=' xay ra khi \(x=y=z=1\)
Áp dụng bất đẳng thức Cô-si, ta có: \(\left(3x+1\right)\left(y+z\right)+x=3xy+3xz+\left(x+y+z\right)\ge3xy+3xz+3\sqrt[3]{xyz}\)\(=3xy+3xz+3\Rightarrow\frac{1}{\left(3x+1\right)\left(y+z\right)+x}\le\frac{1}{3\left(xy+xz+1\right)}\)
Tiếp tục áp dụng bất đẳng thức dạng \(u^3+v^3\ge uv\left(u+v\right)\), ta được: \(\frac{1}{3\left(xy+xz+1\right)}=\frac{1}{3\left[x\left(\left(\sqrt[3]{y}\right)^3+\left(\sqrt[3]{z}\right)^3\right)+1\right]}\le\frac{1}{3\left[x\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1\right]}\)\(=\frac{\sqrt[3]{xyz}}{3\left[\sqrt[3]{x^2}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+\sqrt[3]{xyz}\right]}=\frac{\sqrt[3]{yz}}{3\left(\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}\right)}\)
Tương tự rồi cộng lại theo vế, ta được: \(P\le\frac{1}{3}\)
Đẳng thức xảy ra khi x = y = z = 1