chứng minh đẳng thức
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\cdot\left(a+b\right)\cdot\left(b+c\right)\cdot\left(c+a\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c+a-b\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
và \(ab^2-ac^2-b^3+bc^2=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
Vậy, \(A=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{c-a}{-c-b}=\frac{a-c}{c+b}\)
\(C=\dfrac{\left(b-c+c-a\right)^3+3\left(b-c\right)\left(c-a\right)\left(b-c+c-a\right)+\left(a-b\right)^3}{a^2b-a^2c+b^2c-b^2a+c^2a-c^2b}\)
\(=\dfrac{3\left(b-c\right)\left(c-a\right)\left(b-a\right)}{a^2b-b^2a-a^2c+b^2c+c^2a-c^2b}\)
\(=\dfrac{3\left(b-c\right)\left(c-a\right)\left(b-a\right)}{\left(a-b\right)\cdot ab-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}\)
\(=\dfrac{3\left(b-c\right)\left(a-c\right)\left(a-b\right)}{\left(a-b\right)\left(ab-ac-bc+c^2\right)}\)
\(=\dfrac{3\left(b-c\right)\left(a-c\right)}{a\left(b-c\right)-c\left(b-c\right)}=3\)
câu 2:
a(b-c)-b(a+c)+c(a-b)=-2bc
ta có:
a( b-c ) - b ( a +c )+ c(a-b)
=ab-ac-(ba+bc)+(ca-cb)
=ab-ac-ba-bc+ca-cb
=ab-ba-ac+ca-bc-cb
=0-0-bc-cb
=bc+(-cb)
=-2cb hay -2bc
b)a(1-b)+a(a^2-1)=a(a^2-b)
Ta có:
a(1-b) + a(a^2-1)
=a-ab+(a^3-a)
=a-ab+a^3-a
=a-a-ab+a^3
=0-ab+a^3
=-ab+a^3
=a(-b +a^2) hay a(a^2-b)
BĐT cần CM tương đương:
\(3-VT\ge1\)
\(\Leftrightarrow\frac{a^2+2bc-a\left(b+c\right)}{a^2+2bc}+...\ge1\) (1)
\(VT\left(1\right)=\frac{\left[a^2+2bc-a\left(b+c\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]}+...\)
\(\ge\frac{\left[a^2+2bc-a\left(b+c\right)+b^2+2ca-b\left(c+a\right)+c^2+2ab-c\left(a+b\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\)
\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\) (2)
Ta cần chứng minh mẫu của (2) \(\le\left(a^2+b^2+c^2\right)^2\)
... Tự biến đổi ra thôi thi ta được 1 biểu thức không âm luôn đúng
=> BĐT trên đúng
=> đpcm
Dấu "=" xảy ra khi: a = b = c
\(x^3-y^3-36xy\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-36xy\)
\(=12^3+36xy-36xy\)
\(=1728\)
Câu 1:
a: \(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3\)
b: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(=\left(a^3+3a^2b+3b^2a+b^3\right)+3c\left(a^2+2ab+b^2\right)+3c^2\left(a+b\right)+c^3\)
\(=a^3+3a^2b+3b^2a+b^3+3a^2c+6abc+3b^2c+3ac^2+3bc^2+c^3\)
\(=a^3+b^3+c^3+\left(3a^2b+3b^2a+3b^2c+3c^2b+3a^2c+3c^2a+6abc\right)\)
\(=a^3+b^3+c^3+3\left(a^2b+b^2a+b^2c+c^2b+a^2c+c^2a+2abc\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)