Chứng minh rằng các số có dạng abba chia hết cho 11
Chứng minh rằng ( a>b ) ab - ba chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm thế này nha bn
a) ab + ba = 10a + b + 10b + b = 11a + 11b = 11(a+b) chia hết 11
b) ab - ba = 10a + b - (10b - a) = 10a + b - 10b - a = 9a - 9b = 9(a-b) chia hết 9
c) abba = 1000a + 100b + 10b + a = 1001a + 110b = 11(91a+10b) chia hết 11
mik nha bn
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b) chia hết cho 11
ab - ba = (10a + b) - (10b + a) = 10a + b - 10b - a = 9a + 9b = 9(a + b) chia hết cho 9
abba = 1001a + 110b = 11 . 91a + 11 . 10b = 11(91a + 10b) chia hết cho 11
T nhé
a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 ( Đpcm)
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
Ta có:
abba= 1000a+100b+10b+a
= (1000a+a)+(100b+10b)
= 1001a+110b
= 11*91a+11*10b=11(91a+10b) chia hết cho 11
=> Mọi số có dạng abba chia hết cho 11
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy !!!
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
a) \(\overline{aaa}=111a=37.3a\)
Vậy số có dạng \(\overline{aaa}\)luôn luôn chia hết cho 37
b) Nếu a bằng b thì hiệu đó bằng 0. Vậy nếu a bằng b thì số đó chia hết cho 9.
Nếu a > b thì ab - ba = a x 10 + b - (b x 10 + a) = a x 10 + b - b x 10 - a = a x 9 + b x 9
Vì a x 9 + b x 9 chia hết cho 9 nên suy ra hiệu ab - ba với a lớn hơn hoặc bằng b bao giờ cũng chia hết cho 9
a, Ta có: abba = 1000a +100b + 10b + a = 1001a + 110b = 11 . 91a + 11 . 10b = 11(91a + 10b) chia hết cho 11
Vậy abba chia hết cho 11
b, Ta có: ab - ba = 10a + b - (10b + a) = 10a + b - 10b - a = 9a - 9b = 9(a - b) chia hết cho 9
Vậy ab - ba chia hết cho 9.
Câu 1: abba= 1000a+100b+10b+a
=1001a+110b
Ta có 1001a chia hết 11, 110a chia hết 11
=> abba chia hết cho 11
Câu 2: ab-ba= 10a+b-10b-a
= 9a-9b
= 9(a-b) chia hết cho 9
Xong rùi ahihi^^