Số giá trị x∈Z , thỏa mãn 1+\(\dfrac{-1}{60}\)+\(\dfrac{19}{120}\)<\(\dfrac{x}{36}\)+\(\dfrac{-1}{60}\)<\(\dfrac{58}{90}\)+\(\dfrac{59}{72}\)+\(\dfrac{-1}{60}\) là :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mẫu số chung : \(LCM\left(60;120;36;90;72\right)=360\)
Quy đồng mẫu số :
\(\dfrac{360}{360}+\dfrac{-6}{360}+\dfrac{57}{360}< \dfrac{10\cdot x}{360}< \dfrac{232}{360}+\dfrac{295}{360}+\dfrac{-6}{360}\)
\(\Leftrightarrow\dfrac{411}{360}< \dfrac{10\cdot x}{360}< \dfrac{521}{360}\)
Vậy tập hợp các giá trị của x là \(x=\left\{42;43;44;45;46;47;48;49;50;51;52\right\}\)
a: \(P=\dfrac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x+2}{2}=\dfrac{-3}{x-2}\)
Ta cần chứng minh:
\(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(1\right)\left(a,b>0\right)\)
\(\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{a+b}{ab}\\ \Leftrightarrow4ab\le\left(a+b\right)^2\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)
\(DBXR\Leftrightarrow a=b\)
Do các phép biến đổi tương đương nên (1) luôn đúng
Áp dụng (1), ta có:
\(\dfrac{1}{2x+y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{4}\left[\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\right]=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Chứng minh tương tự, ta được:
\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)
\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)
Cộng từng vế BĐT, ta được:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}.\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)Hay \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\left(đpcm\right)\)
\(DBXR\Leftrightarrow x=y=z=\dfrac{3}{4}\)
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}\cdot\left(\dfrac{x+2-2x}{1-x}\right)\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x-2\right)}{x-1}\)
\(=\dfrac{-6}{\left(x+2\right)\left(x-1\right)}\)
b: Thay x=-4 vào A, ta được:
\(A=-\dfrac{6}{\left(-4+2\right)\left(-4-1\right)}=\dfrac{-6}{-2\cdot\left(-5\right)}=\dfrac{-6}{10}=\dfrac{-3}{5}\)