K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2022

undefined

11 tháng 4 2022

Cảm ơn ạ

14 tháng 5 2021

có ΔEDF cân ở D =>DE=DF; góc E =góc F

xét ΔDEM và ΔDFM có

DM là trung tuyến => EM=FM

góc E =góc F (cmt)

DE=DF (cmt)

=>ΔDEM = ΔDFM (cgc)

b)Có Δ DEF cân mà DM là trung tuyến 

=> DM là đường cao (tc Δ cân )

=> DM⊥EF

c) EM=FM=EF/2=5

xét ΔDEM có DM ⊥ EF => góc EMD =90o

=>EM2+DM2=ED2 (đl pitago)

=>52+DM2=132 => DM=12 

d) Ta có G là trọng tâm của ΔDEF 

=>DG=2/3DM=> DG=2/3*12=8

14 tháng 5 2021

giải giúp mình câu d 

 

DG=2/3DA=8cm

16 tháng 5 2022

8cm

a) Xét ΔDEI và ΔDFI có 

DE=DF(ΔDEF cân tại D)

DI chung

EI=FI(I là trung điểm của EF)

Do đó: ΔDEI=ΔDFI(c-c-c)

b) Ta có: I là trung điểm của EF(gt)

nên \(IE=IF=\dfrac{EF}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Ta có: ΔDEI=ΔDFI(cmt)

nên \(\widehat{DIE}=\widehat{DIF}\)(hai góc tương ứng)

mà \(\widehat{DIE}+\widehat{DIF}=180^0\)(hai góc kề bù)

nên \(\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)

Áp dụng định lí Pytago vào ΔDEI vuông tại I, ta được:

\(DE^2=DI^2+IE^2\)

\(\Leftrightarrow DE^2=5^2+12^2=169\)

hay DE=13(cm)

24 tháng 5 2022

\(\text{Ta có:}\)

\(\text{G là trọng tâm của △MNQ}\)

=> \(\dfrac{MG}{MI}=\dfrac{2}{3}MI\)

\(\text{mà MG = 8cm}\)

\(\text{nên MI =}\) \(MG:\dfrac{2}{3}=8:\dfrac{2}{3}=12\left(cm\right)\)

Vậy: \(MI=12cm\)

MI=3/2MG=12cm

10 tháng 4 2022

`Answer:`

undefined

Gọi `AM; BN; CD` là các đường trung tuyến của `\triangleABC` cắt nhau tại `G`

Tính chất của trọng tâm `G` trong `\triangle`: Điểm `G` cách đỉnh một khoảng `=2/3` độ dài đường trung tuyến đi qua đỉnh đấy.

Ta có: \(BG=\frac{2}{3}BN\Rightarrow BN=BG:\frac{2}{3}=15:\frac{2}{3}=22,5cm\)

10 tháng 4 2022

undefinedundefined#Lam123fk
CHÚC BẠN HỌC TỐT

24 tháng 5 2022

GT + KL:

undefined

Vẽ hình:

undefined

24 tháng 5 2022

Cảm ơn bạn

11 tháng 12 2023

a: ΔDEF vuông tại D

=>\(DE^2+DF^2+EF^2\)

=>\(EF^2=9^2+12^2=225\)

=>\(EF=\sqrt{225}=15\left(cm\right)\)

Ta có; ΔDEF vuông tại D

mà DM là đường trung tuyến

nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)

b: Xét tứ giác DNMK có

\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)

=>DNMK là hình chữ nhật

c: Xét ΔDEF có MN//DF

nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)

=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)

mà \(MN=\dfrac{1}{2}MH\)

nên MH=DF

Ta có: MN//DF

N\(\in\)MH

Do đó: MH//DF

Xét tứ giác DHMF có

MH//DF

MH=DF

Do đó: DHMF là hình bình hành

=>DM cắt HF tại trung điểm của mỗi đường

mà O là trung điểm của DM

nên O là trung điểm của HF

=>H,O,F thẳng hàng