cho biểu thức
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a.rút gọn Q
b.tìm số nguyên x để Q có gtri nguyên
đáp an: a.Q=\(\dfrac{2}{x-1}\)
b.x=-1;x=0;x=2;x=3 thì Q\(\in Z\)
mk chỉ bt đáp án chứ ko biết cách giải
ĐKXĐ: \(x>0;x\ne1\)
\(Q=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{1}{\sqrt{x}}\)
\(=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right).\dfrac{1}{\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{1}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{1}{\sqrt{x}}=\dfrac{2}{x-1}\)
b.
Để \(Q\in Z\Rightarrow2⋮\left(x-1\right)\Rightarrow x-1=Ư\left(2\right)\)
\(\Rightarrow x-1=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x=\left\{-1;0;2;3\right\}\)
Kết hợp ĐKXĐ: \(\Rightarrow x=\left\{2;3\right\}\)
(Đáp án của đề bài đã quên mất ĐKXĐ ban đầu nên ko loại 2 giá trị \(x=-1;x=0\))