phân tích câu sau thành nhân tử dùng hằng đẳng thức
a^2b - b^2 (x+y)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(4-a-b\right)\left(4+a-b\right)\), đằng trước là dấu trừ thì khi bỏ ngoặc phải đổi dấu chứ nhỉ :0
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
\(=x+10\sqrt{x}+25-20=\left(\sqrt{x}+5\right)^2-\left(2\sqrt{5}\right)^2\\ =\left(\sqrt{x}+5-2\sqrt{5}\right)\left(\sqrt{x}+5+2\sqrt{5}\right)\)
đề sai rùi phải là : \(36\left(x-y\right)^2-25\left(2x-1\right)^2\)
\(=>\left[6\left(x-y\right)\right]^2-\left[5\left(2x-1\right)\right]^2=\left[6\left(x-y\right)-5\left(2x-1\right)\right]\left[6\left(x-y\right)+5\left(2x-1\right)\right]\)
\(=>\left(6x-6y-10x+5\right)\left(6x-6y+10x-5\right)=\left(5-4x-6y\right)\left(16x-6y-5\right)\)
Áp dụng HDT : x^2 -y^2 =(x-y) (x+y)
Ủng hộ = 1 cái t i c k nha cảm ơn
a) 9 -(x-y)2
= 32 - (x-y)2
= (3-x+y).(3+x-y)
b) (x2 +4)2 - 16x2
= (x2+4)2 - (4x)2
= (x2 + 4 -4x).(x2 + 4 +4x)
\(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
\(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
\(a^{2b}-b^2.\left(x+y\right)^2=\left(a^b\right)^2-\left(b\left(x+y\right)\right)^2=\left(a^b+bx+by\right)\left(a^b-bx-by\right)\)