K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2022

\(\Leftrightarrow\left(x^2-3x-9-3x+17\right)\left(x^2-3x-9+3x-17\right)=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-26\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+8=0\\x^2-26=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=4;x_2=2\\x^2=26\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=4;x_2=2\\x=\sqrt{26}\end{matrix}\right.\)

Vậy \(S=\left\{4;2;\sqrt{26}\right\}\)

11 tháng 4 2022

sai r bạn ơi

11 tháng 9 2021

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

15 tháng 4 2023

Điều kiện: \(y\ge0\)

pt thứ nhất của hệ \(\Leftrightarrow\left(y-x+3\right)^2=0\) \(\Leftrightarrow y-x+3=0\) \(\Leftrightarrow y=x-3\)

Thay vào pt thứ hai của hệ, ta được  \(2x^2+3x+x-3-\left(3x+1\right)\sqrt{x-3}-2=0\)

\(\Leftrightarrow2x^2+4x-5=\left(3x+1\right)\sqrt{x-3}\)         \(\left(x\ge3\right)\)

\(\Rightarrow\left(2x^2+4x-5\right)^2=\left[\left(3x+1\right)\sqrt{x-3}\right]^2\)

\(\Leftrightarrow4x^4+16x^2+25+16x^3-20x^2-40x=\left(3x+1\right)^2\left(x-3\right)\)

\(\Leftrightarrow4x^4+16x^3-4x^2-40x+25=9x^3-21x^2-17x-3\)

\(\Leftrightarrow4x^4+7x^3+17x^2-23x+28=0\)

Đặt \(f\left(x\right)=4x^4+7x^3+17x^2-23x+28\)

\(f\left(x\right)=4x^4+7x^3+17x^2+4+4+...+4-23x+4\) (có 6 số 4 ở giữa)

\(f\left(x\right)\ge9\sqrt[9]{4x^4.7x^3.17x^2.4^6}-23x+4\) \(=\left(9\sqrt[9]{1949696}-23\right)x+4\)

Hiển nhiên \(9\sqrt[9]{1949696}>23\). Lại có \(x\ge3\) nên \(f\left(x\right)>0\), Như vậy pt \(f\left(x\right)=0\) vô nghiệm. Điều đó có nghĩa là phương trình đã cho vô nghiệm.

9 tháng 5 2022

a. \(x-\dfrac{x+2}{3}< 3x+\dfrac{x}{2}+5\)

\(\Leftrightarrow\dfrac{6x}{6}-\dfrac{2\left(x+2\right)}{6}< \dfrac{18x}{6}+\dfrac{3x}{6}+\dfrac{30}{6}\)

\(\Rightarrow6x-2x-4-18x-3x-30< 0\)

\(\Leftrightarrow-17x< 34\)

\(\Leftrightarrow x>-2\)

b. \(\dfrac{x}{2}+\dfrac{1-x}{3}>0\)

\(\Leftrightarrow3x+2-2x>0\)

\(\Leftrightarrow x>-2\)

c. \(\left(x-9\right)^2-x\left(x+9\right)< 0\)

\(\Leftrightarrow x^2-18x+81-x^2-9x< 0\)

\(\Leftrightarrow-27x< -81\)

\(\Leftrightarrow x>3\)

23 tháng 4 2022

\(3x^2-5x-6x+10=0\)

\(3x^2-11x+10=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=2\\x_2=\dfrac{5}{3}\end{matrix}\right.\)

23 tháng 4 2022

\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=5\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=2\end{matrix}\right.\)

a: =>|x-7|=3-2x

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)

b: =>|2x-3|=4x+9

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)

c: =>3x+5=2-5x hoặc 3x+5=5x-2

=>8x=-3 hoặc -2x=-7

=>x=-3/8 hoặc x=7/2

16 tháng 10 2016

sao đề nhìn bá vậy bạn ...

16 tháng 10 2016

bài này chắc đặt \(\sqrt{x^3-3x+6}\)cho nó gọn thôi

4 tháng 10 2019

PT\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x-17=0\)

\(\Leftrightarrow9x-10=0\)

\(\Leftrightarrow x=\frac{10}{9}\)

Vay nghiem cua PT la \(x=\frac{10}{9}\)