Cho số n2 +1 là số nguyên tố (n>2). Chứng minh rằng n2 -1 là hợp số.
Mấy bạn giúp mình làm nhà, mik thật sự đang rất vội.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p và 10p+1 nguyên tố và p>3 => p=3k+1 vì nếu 3k+2 => 10p+1 không nto do chia hết cho 3
với p=3k+1
=> 17p+1=17.3+17+1=17.3+18 chia hết cho 3=> dpcm
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.
+ Nếu n2 chia cho 5 dư 1 thì n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .
Nên n2+4 không là số nguyên tố
+ Nếu n2 chia cho 5 dư 4 thì n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .
Nên n2+16 không là số nguyên tố.
Vậy n2 ⋮ 5 hay n ⋮ 5
Gọi \(d=ƯC\left(n^2+n;2n+1\right)\)
\(\Rightarrow2\left(n^2+n\right)-n\left(2n+1\right)⋮d\)
\(\Rightarrow n⋮2\)
\(\Rightarrow2n+1-2.n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow n^2+n\) và \(2n+1\) nguyên tố cùng nhau
Điều kiện: n > 3
Xét 3 số tự nhiên liên tiếp: n^2 - 1; n^2; n^2 + 1, trong 3 số này có 1 số chia hết cho 3
Do n nguyên tố > 3 => n không chia hết cho 3 => n^2 không chia hết cho 3
Mà n^2 - 1 nguyên tố > 3 vì n > 3 => n^2 + 1 chia hết cho 3
Mà n^2 + 1 > 3 => n^2 + 1 là hợp số ( đpcm)