Tìm $x,$ $y$ trong hình vẽ sau:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Hình thang CDHG có: CE = GE , DF = HF ( gt )
=> EF là đường TB của hình thang.
=> EF = \(\dfrac{CD+GH}{2}\) = \(\dfrac{12+16}{2}\) = 14 cm ( hay y = 14 cm )
Hình thang ABFE có: AC = CE, BD = DF ( gt )
=> CD là đường TB của hình thang trên.
=> CD = \(\dfrac{AB+EF}{2}\)
mà CD = 12 cm, EF = 14 cm ( cmt )
=> AB = 12.2 - 14 = 10 cm ( hay x = 10 cm )
Vậy x = 10 cm, y = 14 cm
Quãng đường đi với vận tốc 30km/h là :
S1=v1.t1=30x (km)
Quãng đường đi với vận tốc 35 km/h là :
S2=v2.t2 = 35y (km)
Tổng quãng đường đi được là
S = S1 + S2 = 30x + 35y
Bài 1:
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK
c: Xét ΔKAI vuông tại K và ΔHAI vuông tại H có
AI chung
AK=AH
Do đó: ΔKIA=ΔHIA
Suy ra: góc KAI=góc HAI
Bài a:
\(Theo.tính.chất.dãy.tỷ.số.bằng.nhau.ta.có:\\ \dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{6}=\dfrac{x-y-z}{3-2-6}=\dfrac{30}{-5}=-6\\ Vậy:x=-6.3=-18;y=-6.2=-12;z=-6.6=-36\)
Bài b:
Theo t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{4+5-6}=\dfrac{15}{3}=5\\ \Rightarrow a=5.4=20;b=5.5=25;c=5.6=30\\ Vậy:a=20;b=25;c=30\)
a) Quy đồng mẫu số ta được: 30/6x-yx2/6x=x/6x
suy ra 30-yx = x <=> x.y=30-x
Xong bạn liệt kê ra vì có khác nhiều đáp số đó.
Phần b) và c) tương tự vậy !!!
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
mà \(\frac{AB}{AC}=\frac{5}{6}\Rightarrow AB=\frac{5}{6}AC\Rightarrow AB^2=\left(\frac{5}{6}AC\right)^2\)
hay \(\frac{1}{900}=\frac{1}{\left(\frac{5}{6}AC\right)^2}+\frac{1}{AC^2}\Rightarrow AC=6\sqrt{55}\)
\(\Rightarrow AB=\frac{5}{6}.6\sqrt{55}=5\sqrt{55}\)
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow BC=\frac{AB.AC}{AH}=\frac{1650}{30}=\frac{165}{3}\)
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{1375}{\frac{165}{3}}=\frac{25}{9}\)
* Áp dụng hệ thức : \(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}=\frac{1980}{\frac{165}{3}}=4\)
Ta có: \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\)
⇒ \(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.HC}=\dfrac{BH}{CH}=\dfrac{x}{y}=\dfrac{25}{36}\)
Đặt x= 25z, y= 36z
ΔABC vuông tại H có:
AH2= BH.HC ( Py-ta-go)
⇔302= 25z.36z
⇔900z2= 900
⇔z2= 1
⇔z=1
Vậy x=25, y=36