giúp mình nha
Tìm x để giá trị của biểu thức 1 + 6x - x2 là lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = -x² - 6x + 1
= -(x² + 6x - 1)
= -(x² + 6x + 9 - 10)
= -[(x + 3)² - 10]
= -(x + 3)² + 10
Do (x + 3)² ≥ 0 với mọi x ∈ R
⇒ -(x + 3)² ≤ 0 với mọi x ∈ R
⇒ -(x + 3)² + 10 ≤ 10 với mọi x ∈ R
Vậy GTLN của A là 10 khi x = -3
\(A=-x^2-6x+1\)
\(A=-\left(x^2+6x-1\right)\)
\(A=-\left(x^2+6x+9-10\right)\)
\(A=-\left(x^2+2\cdot x\cdot3+3^2\right)+10\)
\(A=-\left(x+3\right)^2+10\)
Có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\)
\(\Rightarrow-\left(x+3\right)^2+10\le10\)
\(\Rightarrow A\le10\)
Dấu "=" xảy ra khi \(\left(x+3\right)^2=0\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy: \(A_{min}=10\Leftrightarrow x=-3\)
a) x ≠ 0 , x ≠ − 2
b) Ta có D = x 2 - 2x - 2.
c) Chú ý D = - x 2 - 2x - 2 = - ( x + 1 ) 2 - 1 ≤ -1. Từ đó tìm được giá trị lớn nhất của D = -1 khi x = -1.
A+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0
=> A >= -1
Dấu "=" xảy ra <=> x+3=0 <=> x=-3
Vậy GTNN của A = -1 <=> x=-3
Tk mk nha
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
-x2+6x+2=-(x2-6x-2) = -(x-3)2+11
Ta có (x-3)2 > 0 với mọi x
=> -(x-3)2 < 0 với mọi x
=> -(x-3)2+11 < 11
Dấu "=" xảy ra khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)
-x2 + 6x +2 = -x2 + 6x -9 +11
= -( x2 -6x +9 ) +11
= -(x-3)2 +11
Ta nhận thấy:
(x-3)2 lớn hơn hoặc bằng 0 => -(x-3)2 bé hơn hoặc bằng 0
Khi đó -(x-3)2 + 11 bé hơn hoặc bằng 11.
Dấu "=" xảy ra khi -(x-3)2 =0 <=> x-3=0 <=> x=3
Vậy giá trị lớn nhất của biểu thức -x2 +6x +2 là 11 khi x=3
Điều kiện x ≠ -2 và x ≠ 0
Vì x + 1 2 ≥ 0 nên - x + 1 2 ≤ 0 ⇒ - x + 1 2 - 1 ≤ - 1
Khi đó biểu thức có giá trị lớn nhất bằng -1 khi x = -1
Vậy biểu thức đã cho có giá trị lớn nhất bằng -1 tại x = -1.
1+6x-x2=-x2+6x-9+10=-(x2-2*x*3+3^2)+10=-(x-3)2+10
Ta có: -(x-3)2<=0(với mọi x)
=>-(x-3)2+10<=10(với mọi x)
hay 1+6x-x2<=10(________)
Do đó, GTLN của 1+6x-x2 là 10 khi:
x-3=0
x=0+3
x=3
Vậy GTLN của 1+6x-x2 là 10 khi x=3
Ta có: 1 + 6x - x2 = -x2 + 6x + 1 = -(x2 - 6x - 1) = -(x2 - 2 . 3x + 32 - 10) = -[ (x - 3)2 - 10 ] = -(x - 3)2 + 10 \(\le\)10
=> Giá trị lớn nhất của 1 + 6x - x2 là 10 khi -(x - 3)2 = 0 => x = 3
Vậy x = 3 để 1 + 6x - x2 đạt giá trị lớn nhất là 10