tim x
1-(\(\frac{x}{5}\)+x-\(\frac{2}{3}\)) :\(\frac{3}{4}\)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\)là dấu nhân hả bạn? Nếu vậy thì mk làm cho nhé
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.......\cdot\frac{17}{18}\cdot\frac{18}{19}\cdot\frac{19}{20}=\frac{1}{20}\)
Vậy \(A=\frac{1}{20}\)
\(B=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot........\cdot1\frac{1}{2005}\cdot1\frac{1}{2006}\cdot1\frac{1}{2007}\)
\(B=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot......\cdot\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot\frac{2008}{2007}=\frac{2008}{2}=1004\)
Vậy \(B=1004\)
DẤU CHẤM LÀ DẤU NHÂN
a,
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)
b, \(1\frac{1}{2}.1\frac{1}{3}....1\frac{1}{2017}=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}=\frac{2018}{2}=1009\)
a) \(\left|\frac{4}{7}-x\right|+\frac{2}{5}=0\)
=> \(\left|\frac{4}{7}-x\right|=-\frac{2}{5}\), vô lí vì \(\left|\frac{4}{7}-x\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
b) \(6-\left|\frac{1}{4}x+\frac{2}{5}\right|=0\)
=> \(\left|\frac{1}{4}x+\frac{2}{5}\right|=6-0=6\)
=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x+\frac{2}{5}=6\\\frac{1}{4}x+\frac{2}{5}=-6\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x=\frac{28}{5}\\\frac{1}{4}x=-\frac{32}{5}\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
c) \(\left|x-\frac{1}{3}\right|+\left|2-\frac{4}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\left|\frac{6}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\frac{6}{5}=0\)
=> \(\left|x-\frac{1}{3}\right|=-\frac{6}{5}\), vô lí vì \(\left|x-\frac{1}{3}\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
a) B=(\(\frac{21}{x^2-9}\)-\(\frac{x-4}{3-x}\)-\(\frac{x-1}{3+x}\)) : (1-\(\frac{1}{x+3}\)) (ĐK: x khác +-3)
=(\(\frac{21}{\left(x-3\right).\left(x+3\right)}\)+\(\frac{x-4}{x-3}\)-\(\frac{x-1}{x+3}\)) : (1-\(\frac{1}{x+3}\))
=(\(\frac{21+\left(x+4\right).\left(x+3\right)-\left(x-1\right).\left(x-3\right)}{\left(x-3\right).\left(x+3\right)}\):(\(\frac{x+3-1}{x+3}\))
=(\(\frac{3x+6}{\left(x-3\right).\left(x+3\right)}\)) . (\(\frac{x+3}{x+2}\))
=(\(\frac{3.\left(x+2\right)}{\left(x-3\right).\left(x+3\right)}\). \(\frac{x+3}{x+2}\)
=\(\frac{3}{x-3}\)
b) B=\(\frac{3}{x-3}\)=\(\frac{-3}{5}\)
(=) \(\frac{3.5}{x-3}\)=-3
(=) -3.(x-3) = 15
(=) -3x=6
(=) x=-2
vậy x=2 thì B=\(\frac{-3}{5}\)
c) B=\(\frac{3}{x-3}\)<0
(=) 3 < x - 3
(=) -x < - 3 - 3
(=) x > 6
Vậy với x > 6 thì B < 0
\(\left(3x+1\right)^2=25\)
\(\Rightarrow\left(3x+1\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}3x+1=5\\3x+1=-5\end{cases}\Rightarrow\orbr{\begin{cases}3x=5-1=4\\3x=-5-1=-6\end{cases}}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)
\(\left[x-\frac{1}{2}\right]+\frac{1}{2}=\frac{5}{8}\)
\(\Rightarrow x-0=\frac{5}{8}\)
\(x=\frac{5}{8}\)
\(\left[x+\frac{3}{4}\right]-\frac{1}{3}=0\)
\(x+\frac{3}{4}=0+\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{1}{3}-\frac{3}{4}\)
\(x=\frac{-5}{12}\)
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)
\(\Leftrightarrow x=-2020\)
1-[x(1/5+1)-2/3]=x-75
1-6/5x+2/3=x-75
1+2/3+75=x+6/5x
230/3=11/5x
x=230/3:11/5=1150/33
tui viet nham de bai ban oi