K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2022

\(\left|x-2021\right|=x-2021\)

\(\Leftrightarrow x-2021\ge0\)

\(\Leftrightarrow x\ge2021\)

Vậy nghiệm của pt là \(x\ge2021\)

\(=\dfrac{\left|x-2020\right|+2022-1}{\left|x-2020\right|+2022}=1-\dfrac{1}{\left|x-2020\right|+2022}\\ mà\left|x-2020\right|\ge0\\ \Rightarrow\left|x-2022\right|+2022\ge2022\) 

\(\Rightarrow\dfrac{1}{\left|x-2020\right|+2022}\le\dfrac{1}{2022}\\ =1-\dfrac{1}{\left|x-2020\right|+2022}\ge1-\dfrac{1}{2022}\\ =\dfrac{2021}{2022}\\ \Rightarrow B_{min}=\dfrac{2021}{2022}.tại.x-2020=0\Rightarrow x=2020\)

25 tháng 3 2022

Xem lại dưới mẫu

12 tháng 9 2021

:v e xin kiếu

12 tháng 9 2021

Em tham khảo nhé

https://hoc24.vn/cau-hoi/cho-xsqrtx22021ysqrty220212021tinh-axy.332667728355

25 tháng 9 2021

a) \(A=3\left|2x-\dfrac{3}{2}\right|+2021^0=3\left|2x-\dfrac{3}{2}\right|+1\ge1\)

\(minA=1\Leftrightarrow2x=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{4}\)

b) \(B=2\left|x-6\right|+3\left(2y-1\right)^2+2021^0=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\)

\(minB=1\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)

25 tháng 9 2021

\(A=3\left|2x-\dfrac{3}{2}\right|+1\ge1\\ A_{min}=1\Leftrightarrow2x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{4}\\ B=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)

24 tháng 1 2021

a/ \(=\lim\limits_{h\rightarrow0}\dfrac{2x^3+6x^2h+6xh^2+2h^3-2x^3}{h}\)

\(=\lim\limits_{h\rightarrow0}\dfrac{6xh^2+6x^2h+2h^3}{h}=\lim\limits_{h\rightarrow0}\left(6xh+6x^2+2h^2\right)=6x^2\)

b/ Xet day :\(S=x+x^2+....+x^{2021}\)

Day co \(\left\{{}\begin{matrix}u_1=x\\q=x\end{matrix}\right.\Rightarrow S=u_1.\dfrac{q^{2021}-1}{q-1}=x.\dfrac{x^{2021}-1}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}-x}{x-1}-2021}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-x-2021x+2021}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}}{x^2}-\dfrac{x}{x^2}-\dfrac{2021x}{x^2}+\dfrac{2021}{x^2}}{\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow1}\dfrac{x^{2020}}{1}=1\)

 

 

 

24 tháng 1 2021

Lam lai cau b, hinh nhu bi nham sang dang \(\dfrac{\infty}{\infty}\) roi

Xet day: \(S=x+x^2+...+x^{2021}\)

\(\Rightarrow S=x.\dfrac{x^{2021}-1}{x-1}=\dfrac{x^{2022}-x}{x-1}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-2022x+2021}{\left(x-1\right)^2}\)

L'Hospital: \(\Rightarrow...=\lim\limits_{x\rightarrow1}\dfrac{2022x^{2021}-2022}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2022.2021.x^{2020}}{2}=2043231\)

Is that true :v?

 

Ta có: \(\left|x\right|+\left(-4\right)^3=2021\)

\(\Leftrightarrow\left|x\right|-64=2021\)

\(\Leftrightarrow\left|x\right|=2085\)

hay \(x\in\left\{2085;-2085\right\}\)

10 tháng 7 2021

(-4)^3+|x|=2021

-64+|x|=2021

|x|=2021-(-64)

|x|=2085

=>x={-2085;2085}

Vậy x={-2085;2085}

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

$|x-1|+|x-2021|=|x-1|+|2021-x|\geq |x-1+2021-x|=2020$

$|x-2|+|x-2020|=|x-2|+|2020-x|\geq |x-2+2020-x|=2018$

..............

$|x-1010|+|x-1012|\geq |x-1010+1012-x|=2$

Cộng theo vế thu được:

$G\geq 2020+2018+2016+...+2+|x-1011|$

$G\geq 1021110+|x-1011|\geq 1021110$

Vậy $G_{\min}=1021110$

Giá trị này đạt tại:

\(\left\{\begin{matrix} (x-1)(2021-x)\geq 0\\ (x-2)(2020-x)\geq 0\\ .....\\ (x-1010)(1012-x)\geq 0\\ x-1011=0\end{matrix}\right.\Leftrightarrow x=1011\)

11 tháng 3 2022

\(A=\left(\dfrac{2020}{2021}xy^5z\right).\left(\dfrac{2020}{2021}x^3yz^2\right).\left(-\dfrac{2020}{2021}\right)^0\)

\(a)A=\dfrac{2020.2021.2020}{2021.2020.2021}.\left(x.x^3\right).\left(y^5.y\right).\left(z.z^2\right)\Leftrightarrow A=\dfrac{2020}{2021}x^4.y^6.z^3\)

\(b)A=\dfrac{2020}{2021}x^4.y^6.z^3\)

\(\Rightarrow\text{A có hệ số là:}\dfrac{2020}{2021}\)

\(\text{Phần biến là:}\left(x,y,z\right)\)

\(c)\text{Xét A ta có:}\dfrac{2020}{2021}< 0;x^4,y^6\text{ luôn }< 0\)

\(\Rightarrow\dfrac{2020}{2021}x^4.y^6>0\Rightarrow\text{ Nếu }z< 0\Rightarrow A\le0\text{ và z có số mũ là:3}\)

\(\text{Chẳng hạn:}\left(-\right).\left(-\right).\left(-\right)=\left(-\right).< 0\Rightarrow z\text{ phải }\ge0\text{ thì }A\ge0\)

\(\Rightarrow Z\in N\)

23 tháng 10 2021

b: \(f\left(-x\right)=\dfrac{\left|-x+1\right|+\left|-x-1\right|}{\left|-x+1\right|-\left|-x-1\right|}\)

\(=\dfrac{\left|x-1\right|+\left|x+1\right|}{\left|x-1\right|-\left|x+1\right|}\)

=-f(x)

Vậy: f(x) là hàm số lẻ

24 tháng 10 2021

làm giúp mình câu c với mình cho đúng cho