K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Ta xét tam giác ABC: \(AC = 20\) km, \(BC = 75\) km.

Và \(AC + BC = 20 + 75 = 95\) km. Mà tổng hai cạnh bất kì trong một tam giác luôn lớn hơn độ dài cạnh còn lại.

Hay \(AC + BC = 95\) > AB.

Do đó, AB < 100.

Vậy sóng 4G của trạm phát sóng A có thể phủ đến đảo B. (Vì sóng 4G có thể phủ kín đến bán kính 100 km).

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Gọi BM=x km (0<x<7)

=> MC=7-x (km)

Ta có: \(AM = \sqrt {A{B^2} + B{M^2}} \)\( = \sqrt {16 + {x^2}} \left( {km} \right)\)

Thời gian từ A đến M là: \(\frac{{\sqrt {16 + {x^2}} }}{3}\left( h \right)\)

Thời gian từ M đến C là: \(\frac{{7 - x}}{5}\left( h \right)\)

Tổng thời gian từ A đến C là 148 phút nên ta có:

\(\begin{array}{l}\frac{{\sqrt {16 + {x^2}} }}{3} + \frac{{7 - x}}{5} = \frac{{148}}{{60}}\\ \Leftrightarrow \frac{{\sqrt {16 + {x^2}} }}{3} + \frac{{7 - x}}{5} = \frac{{37}}{{15}}\\ \Leftrightarrow \frac{{5\sqrt {16 + {x^2}} }}{{15}} + \frac{{3.\left( {7 - x} \right)}}{{15}} = \frac{{37}}{{15}}\\ \Leftrightarrow 5\sqrt {16 + {x^2}}  + 3.\left( {7 - x} \right) = 37\\ \Leftrightarrow 5\sqrt {16 + {x^2}}  = 16 + 3x\\ \Leftrightarrow 25.\left( {16 + {x^2}} \right) = 9{x^2} + 96x + 256\\ \Leftrightarrow 16{x^2} - 96x + 144 = 0\\ \Leftrightarrow x = 3\left( {tm} \right)\end{array}\)

Vậy khoảng cách từ vị trí B đến M là 3 km.

13 tháng 7 2018

Đáp án A

Phương pháp:  Sử dụng phương pháp hàm số.

Cách giải: Gọi độ dài đoạn MB là x 

Tam giác ABM vuông tại B => 

Thời gian người đó đi từ A tới C: 

Xét hàm số f(x) 

=> x =  2 5

Vậy, để người đó đến C nhanh nhất thì khoảng cách từ B đến M là  2 5

3 tháng 3 2017

10 tháng 6 2019

Đáp án B

Trước tiên ta xác định hàm số f(x) là hàm số tính thời gian người canh hải đăng phải đi.

Đặt BM= x , CM =7-x->  A M = x 2 + 25   . Theo đề ta có ngưới canh hải đăng chèo từ A đến M trên bờ biển với v = 4km/h rồi đi bộ đến C với v = 6 km/h

⇒ f ( x ) = x 2 + 25 4 + 7 − x 6 = 3 x 2 + 25 − 2 x + 14 12 với  x ∈ ( 0 ; 7 )

f ' ( x ) = 1 12 3 x x 2 + 25 − 2 f ' ( x ) = 0 ⇔ 3 x x 2 + 25 − 2 = 0 ⇔ 3 x − 2 x 2 + 25 = 0 ⇔ 2 x 2 + 25 = 3 x ⇔ 5 x 2 = 100 x ≥ 0 ⇔ x = ± 2 5 x ≥ 0 ⇔ x = 2 5

Vậy đoạn đường ngắn nhất thì giá trị phải nhỏ nhất

f ( 0 ) = 29 12 f ( 2 5 ) = 14 + 5 5 12 f ( 7 ) = 74 4

Vậy giá trị nhỏ  nhất của f(x) là 14 + 5 5 12 tại x= 2 5

Nên thời gian đi ít nhât là BM= x = 2 5

9 tháng 7 2019

Đáp án B

Trước tiên ta xác định hàm số f(x) là hàm số tính thời gian người canh hải đăng phải đi.

Đặt BM= x , CM =7-x ⇒ A M = x 2 + 25 . Theo đề ta có ngưới canh hải đăng chèo từ A đến M trên bờ biển với v = 4km/h rồi đi bộ đến C với v = 6 km/h

  ⇒ f ( x ) = x 2 + 25 4 + 7 − x 6 = 3 x 2 + 25 − 2 x + 14 12 với  x ∈ ( 0 ; 7 )

f ' ( x ) = 1 12 3 x x 2 + 25 − 2 f ' ( x ) = 0 ⇔ 3 x x 2 + 25 − 2 = 0 ⇔ 3 x − 2 x 2 + 25 = 0 ⇔ 2 x 2 + 25 = 3 x ⇔ 5 x 2 = 100 x ≥ 0 ⇔ x = ± 2 5 x ≥ 0 ⇔ x = 2 5

Vậy đoạn đường ngắn nhất thì giá trị phải nhỏ nhất

f ( 0 ) = 29 12 f ( 2 5 ) = 14 + 5 5 12 f ( 7 ) = 74 4

Vậy giá trị nhỏ  nhất của f(x) là  14 + 5 5 12   tại x=  2 5

Nên thời gian đi ít nhât là BM= x =  2 5

2 tháng 4 2018

Hướng dẫn: Chọn đáp án B

Vì điểm C từ vị trí cân bằng đi xuống nên cả đoạn BD đang đi xuống. Do đó, AB đi lên, nghĩa là sóng truyền E đến A.

24 tháng 5 2019

25 tháng 10 2017

13 tháng 2 2022

Áp dụng định li Py - ta - go vào △ ABC vuông tại C ta có:

AB2 = BC2 + AC2

AB= 122 + 52 = 169

⇒ AB = \(\sqrt{169}=13\)

Vậy cáp  treo được xây dựng dài 13 km