Thu gọn đa thức sau:
2x2-6x4-2x2+5x4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A = -2xy + 3/2xy^2 + 1/2xy^2 + xy = -2xy + 2xy^2 + xy = 2xy^2 - xy
b: B = xy^2z + 2xy^2z - xyz - 3xy^2z + xy^2z = 3xy^2z - xyz
c: C = 4x^2y^3 + x^4 - 2x^2 + 6x^4 - x^2y^3 = 7x^4 + 3x^2y^3 - 2x^2
d: D = 3/4xy^2 - 2xy - 1/2xy^2 + 3xy = 5/4xy^2 + xy
e: E = 2x^2 - 3y^3 - z^4 - 4x^2 + 2y^3 + 3z^4 = -2x^2 - y^3 + 2z^4
f: F = 3xy^2z + xy^2z - xyz + 2xy^2z - 3xyz = 6xy^2z - 2xyz
a: A=-2xy+3/2xy^2+1/2xy^2+xy
=-2xy+xy+3/2xy^2+1/2xy^2
=2xy^2-xy
b: \(B=xy^2z+2xy^2z-xyz-3xy^2z+xy^2z\)
\(=xy^2z\left(1+2-3+1\right)-xyz=xy^2z-xyz\)
c: \(=4x^2y^3-x^2y^3+x^4+6x^4-2x^2\)
\(=7x^4-x^2+3x^2y^3\)
d: \(=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+3xy-2xy\)
=1/4xy^2+xy
e: \(=2x^2-4x^2-3y^3+2y^3+3z^4-z^4\)
\(=-2x^2-y^3+2z^4\)
f: \(=xy^2z+3xy^2z+2xy^2z-xyz-3xyz\)
\(=6xy^2z-4xyz\)
a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)
\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)
\(=9x^4+3x^2-x-6\)
Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)
\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)
\(=-x^4-x^3-3x^2+4x+5\)
c) Ta có: M(x)+N(x)
\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)
\(=8x^4-x^3+3x-1\)
21:
a: \(f\left(x\right)=4x^4-x^3-4x^2+x-1\)
\(g\left(x\right)=x^4+4x^3+x-5\)
b: f(x)-g(x)
=4x^4-x^3-4x^2+x-1-x^4-4x^3-x+5
=3x^4-5x^3-4x^2+4
f(x)+g(x)
=4x^4-x^3-4x^2+x-1+x^4+4x^3+x-5
=5x^4+3x^3-4x^2+2x-6
c: g(-1)=1-4-1-5=-9
a,
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức là 3
Hệ số cao nhất ứng với x mũ lớn nhất là 1
a, \(P\left(x\right)=5x^5-4x^2+7x+1;Q\left(x\right)=5x^5-4x^2+3x+8\)
b, \(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)
c, \(P\left(x\right)=Q\left(x\right)\Rightarrow7x+1=3x+8\Leftrightarrow4x=7\Leftrightarrow x=\dfrac{7}{4}\)
a/ \(P\left(x\right)=8x^5+7x-6x^2-3x^5+2x^2+1\)
\(=8x^5-3x^5-6x^2+2x^2+7x+1\)
\(=5x^5-4x^2+7x+1\)
\(Q\left(x\right)=4x^5+3x-2x^2+x^5-2x^2+8\)
\(=4x^5+x^5-2x^2-2x^2+3x+8\)
\(=5x^5-4x^2+3x+8\)
b/ \(P\left(x\right)=5x^5-4x^2+7x+1\)
+ \(Q\left(x\right)=5x^5-4x^2+3x+8\)
____________________________
\(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)
c/ \(P\left(x\right)=Q\left(x\right)\)
\(\Rightarrow5x^5-4x^2+7x+1=5x^5-4x^2+3x+8\)
\(\Rightarrow7x+1=3x+8\)
\(\Rightarrow4x-7=0\)
\(\Rightarrow x=\dfrac{7}{4}\)
a) P(x) = 5x5 - 4x2 + 7x + 15
Q(x) = 5x5 - 4x2 + 3x + 8
b) Có: P(x) - Q(x) = 4x + 7
P(x) - Q(x) = 0 <=> x = \(-\dfrac{-7}{4}\)
`a,```P(x) = 8x^5 +7x -6x^2 -3x^5 +2x^2+15`
`= (8x^5 -3x^5 ) +(-6x^2+2x^2) +7x+15`
`=5x^5 -4x^2 +7x+15`
`Q(x) =4x^5 +3x-2x^2 +x^5 -2x^2+8`
`=(4x^5+x^5) +(-2x^2 -2x^2)+3x+8`
`= 5x^5 - 4x^2 +3x+8`
`b, P(x) -Q(x)=(5x^5 -4x^2 +7x+15)-(5x^5 - 4x^2 +3x+8)`
`= 5x^5 -4x^2 +7x+15-5x^5 +4x^2 -3x-8`
`= (5x^5-5x^5)+(-4x^2+4x^2) +(7x-3x)+(15-8)`
`= 0 + 0 +4x + 7`
`=4x+7`
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức : \(3\)
Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)
b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)
\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)
Rút gọn
M(x)= 2x2 - 7 + 2x3 - 4x4 + 5x4 + 2
= x4 + 2x3 + 2x2 - 5.
Chọn D
2x2-6x4-2x2+5x4 =(2x6x2x5)x4.2
đa thức = -x4