A=1/10+1/11+1/12+...+1/99+1/100. Chứng tỏ A>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> A>1
Chỉ cần 30 số hạng đầu đã lớn hơn 1.
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=>
1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
A = 1 / 10 + ( 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100 )
A = 1 / 10 + ( 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100 ) > 1 / 10 + ( 1 / 100 + 1 / 100 + ... + 1 / 100 )
= 1 / 10 + 90 / 100 = 1
Vậy A > 1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=>
1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
đúng nhé
Ta có:
\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{40}{50}=\frac{4}{5}\)
\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Từ đây ta suy ra
A > \(\frac{4}{5}+\frac{1}{2}+\frac{1}{100}=1,31>1\)